• Title/Summary/Keyword: Recirculation system

Search Result 419, Processing Time 0.026 seconds

Analysis of Three Dimensional Liquid Ramjet Engine with Spray and Combustion (액체 램제트 엔진의 3차원 분무 및 연소 반응 해석)

  • 오대환;임상규;손창현;이충원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.2
    • /
    • pp.18-24
    • /
    • 1999
  • Liquid ramjet combustor is closely connected with complex phenomena due to a series of processes such as intake air, spray, mixing, and combustion. The present numerical experiments were peformed to investigate these flow characteristics for two and three dimensional liquid ramjet combustor. Grid system was made with three domains: intake region where air is supplied and fuel is injected, combustor and nozzle region, and exit atmosphere region. The numerical results showed that two and three dimensional flow patterns in recirculation region of combustor were significantly different each other and spray model was necessary to predict correctly the chemical reaction flow characteristics. Numerically examined for two different location of fuel injector, one is located on the bottom position of curved intake and the other is located on the top position. We found that bottom position of fuel injector is better than top position because fuel influx to the recirculation region which is need to sustain chemical reaction is more than the latter.

  • PDF

A STUDY ON THE IMPROVEMENT OF κ-εTURBULENCE MODEL FOR PREDICTION OF THE RECIRCULATION FLOW (재순환유동 예측을 위한 κ-ε 난류모델 개선에 대한 연구)

  • Lee, Y.M.;Kim, C.W.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.12-24
    • /
    • 2016
  • The standard ${\kappa}-{\varepsilon}$ and realizable ${\kappa}-{\varepsilon}$ models are adopted to improve the prediction performance on the recirculating flow. In this paper, the backward facing step flows are used to assess the prediction performance of the recirculation zone. The model constants of turbulence model are obtained by the experimental results and they have a different value according to the flow. In the case of an isotropic flow situation, decaying of turbulent kinetic energy should follow a power law behavior. In accordance with the power law, the coefficients for the dissipation rate of turbulent kinetic energy are not universal. Also, the other coefficients as well as the dissipation coefficient are not constant. As a result, a suitable coefficients can be varied according to each of the flow. The changes of flow over the backward facing step in accordance with model constants of the ${\kappa}-{\varepsilon}$ models show that the reattachment length is dependent on the growth rate(${\lambda}$) and the ${\kappa}-{\varepsilon}$ models can be improved the prediction performance by changing the model constants about the recirculating flow. In addition, it was investigated for the curvature correction effect of the ${\kappa}-{\varepsilon}$ models in the recirculating flow. Overall, the curvature corrected ${\kappa}-{\varepsilon}$ models showed an excellent prediction performance.

Flow Field in Volute for Various Operating Conditions of Centrifugal Compressor (원심압축기의 운전점에 따른 벌류트 내부 유동장)

  • Kang, Kyung Jun;Shin, You Hwan;Kim, Kwang Ho;Lee, Yoon Pyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.5
    • /
    • pp.531-538
    • /
    • 2013
  • The primary function of centrifugal compressor volute is to flow from the impeller and diffuser to the pipe system. The strength of the scroll vortex and flow pattern in the volute vary with the operating point. This is largely caused by the interaction between the impeller and the volute flow fields. The recirculation flow around the tongue and the scroll vortex can be used to understand the characteristics of the volute flow at off-design points. The present study aims to find the characteristics of a flow pattern in the diffuser and volute of a centrifugal compressor from the rectangular cross section of the volute. Measurements are carried out using PIV. The results obtained in this study show that the separation region around the tongue is reduced and that the recirculation flow increases as the flow coefficient decreases.

Influence of Driving Routes and Seasonal Conditions to Real-driving NOx Emissions from Light Diesel Vehicles (주행 경로 및 계절의 변화가 소형 경유차의 실제 주행 시 질소산화물 배출량에 미치는 영향)

  • Lee, Taewoo;Kim, Jiyoung;Park, Junhong;Jeon, Sangzin;Lee, Jongtae;Kim, Jeongsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.148-156
    • /
    • 2014
  • The objective of this study is to compare NOx emissions from light duty diesel vehicles measured from on-road tests that conducted under various driving routes and seasonal conditions. We measured real-driving NOx emissions using PEMS, portable emissions measurement system, under the urban, rural and motorway road traffic conditions. On-road tests were repeated at summer, fall and winter season. The accumulated driving distance is more than 1,200 km per each vehicle. Route average NOx emission factors were compared among nine route-season combinations. The emission characteristics of each combinations were investigated using time series mass emission rates and vehicle operation-based emission rates and activities, which is based on U.S. EPA's MOVES model. Most concerned route-season combination is "urban road condition at summer", which shows two to eleven times higher NOx emissions than other combinations. The emission rates and activities under low speed operating conditions should be managed in order to reduce urban-summer NOx. From a NOx control strategy perspective, the exhaust gas recirculation, EGR, is observed to be properly operated under wide range of vehicle driving conditions in Euro-5 vehicles, even if the air conditioner turns on. In high power demanding conditions, the effect of overspeeding could be more critical than that of air conditioner activation.

Improved Seed Production Method of Nile Tilapia in Closed Recirculation System (순환여과식 시스템에서 나일틸라피아의 종묘 생산성 향상을 위한 연구)

  • 노충환;남윤권;조재윤;김동수
    • Journal of Aquaculture
    • /
    • v.10 no.3
    • /
    • pp.373-380
    • /
    • 1997
  • The experiments were conducted to improve the mass production of Nile tilapia, Oreochromis niloticus, seed in closed recirculation systems. It was observed that smaller females (340g av. body weight) under lower stocking density (1.2 kg/$m^2$)) group produced 3.6 times more fry than larger females (612g av. body weight) under higher stocking density (2.1kg/$m^2$) group when the fry were collected at 30 days after the broods stocked. The clutch removal method where the eggs and sacfry were collected from female mouth followed by artificial incubation showed improved seed production, when compared to the traditional natural mouth-brooding method by harvesting free swimming fry from brood tanks (P<0.05). Under the clutch removal method, short-term incubatin of brooders (14 days) was proven to be more effective than long-term incubatin (21 days). Hatching success of clutch removed eggs was ranged from 55.7 to 91.5% in 1.8$\ell$ of upwelling incubators depending on the different development stages.

  • PDF

Analysis of Performance and Emissions Characteristics on Gasoline Engine for Hybrid Vehicles with Optimum EGR Rate and the Cylinder Variation of EGR Rate (하이브리드용 가솔린 엔진에서 최적 EGR적용 및 실린더간 편차에 따른 성능 및 배출가스 특성 분석)

  • Park, Cheol-Woong;Choi, Young;Kim, Chang-Gi
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.87-95
    • /
    • 2009
  • EGR(Exhaust gas recirculation) provides an important contribution in achieving the development targets of low fuel consumption and low exhaust emission levels on gasoline engine for hybrid vehicles while allowing stoichiometric fuelling to be retained for applications using the three-way catalysts. However, the occurrence of excessive cyclic variation with high EGR normally prevents substantial fuel economy improvements from being achieved in practice. Therefore, the optimum EGR rate in gasoline engine for hybrid vehicles should be carefully determined in order to achieve low fuel consumption and low exhaust emission. In this study, 2 liters gasoline engine with E-EGR system was used to investigate the effects of EGR with optimum EGR rate on fuel economy, combustion stability, engine performance and exhaust emissions. As the engine load becomes higher, the optimum EGR rate tends to increase. The increase in engine load and reduction in engine speed make the fuel consumption better. The fuel consumption was improved by maximum 5.5% at low speed, high load operating condition. As the simulated EGR variation on a cylinder is increased, due to the increase in cyclic variation, the fuel consumption and emissions characteristics were deteriorated simultaneously. To achieve combustion stability without a penalty in fuel consumption and emissions, the cylinder-to-cylinder variations must be maintained under 10%.

A Study on the Use of Oyster Shells for Phosphorus Removal (인 제거를 위한 패각의 활용법에 관한 연구)

  • Lee, Jong-Il;Kim, Woo-Hang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.2
    • /
    • pp.105-109
    • /
    • 2008
  • In our country, limiting nutrient is known as phosphorus in the most lakes. Therefore, the removal of phosphorus is a very important process in sewage treatment. However, many of the sewage treatment plants employ the conventional activated sludge process, known to remove $10{\sim}30%$ of phosphorus. Thus, additional phosphorous removal process will be needed. Oyster shells have been known to remove phosphorus in water. The removal efficiency of phosphorus was highest at smallest size of oyster shells and at the highest pH for batch test. The phosphorous removal rate with various calcium concentrations was increased by increasing calcium concentration. At the 20 mg/l of calcium, more than 90% of phosphorous was removed in two hours. The removal efficiency of phosphorous was increased greatly at 300% of recirculation rate. With 300% of recirculation rate, the removal efficiency reached 80% at pH 11. The negative effects of bicarbonate on crystallization were observed in oyster shells. The effects of bicarbonate on rate constant were also investigated by applying these results to experimental equation. The rate constant was decreased at the inverse logarithm bicarbonate concentration.

  • PDF

Evaluation of Aisle Partition System's Thermal Performance in Large Data Centers for Superior Cooling Efficiency (데이터센터의 공조효율 향상을 위한 공조파티션시스템 성능평가에 관한 연구)

  • Cho, Jin-Kyun;Jeong, Cha-Su;Kim, Byung-Seon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.4
    • /
    • pp.205-212
    • /
    • 2010
  • In a typical data center, large numbers of IT sever racks are arranged multiple rows. IT environments, in which extensive electronic hardware is air-cooled, cooling system inefficiencies result when heated exhaust air from equipment prematurely mixes with chilled coolant air before it is used for cooling. Mixing of chilled air before its use with heated exhaust air results in significant cooling inefficiencies in many systems. Over temperatures may not only harm expensive electronic equipment but also interrupt critical and revenue generating services. Cool shield is a cost effective aisle partition system to contain the air in cold aisles and hot aisles of an IT server room. This paper focuses on the use of performance metrics for analyzing aisle partition system in data centers.

Effect of Recirculated Exhaust Gas upon Performance and Exhaust Emissions in Power Plant Boilers with FGR System (FGR 시스템 공력 플랜트 보일러의 성능 및 배기 배출물에 미치는 재순환 배기의 영향)

  • Bae, Myung-Whan;Jung, Kwong-Ho;Choi, Seung-Chul;Cho, Yong-Soo;Kim, Yi-Suk
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1686-1691
    • /
    • 2004
  • The effect of recirculated exhaust gas on performance and exhaust emissions with FGR rate are investigated by using a natural circulation, pressurized draft and water tube boiler with FGR system operating at several boiler loads and over fire air(OFA) damper openings. The purpose of this study is to apply the FGR system to a power plant boiler for reducing $NO_{x}$ emissions. To activate the combustion, the suction damper of two stage combustion system installed in the upper side of wind box is opened by handling the lever between $0^{\circ}$ and $90^{\circ}$ , and the OFA with 0 to 20% into the flame is supplied, as the combustion air supplied to burner is reduced. It is found that the fuel consumption rate divided by evaporation rate does not show an obvious tendency to increase or decrease with rising the FOR rate, and $NO_{x}$ emissions are decreased, at the same OF A damper opening, as FOR rates are elevated and boiler loads are dropped.

  • PDF

A Heat Exchanging Characteristics of Organic Rankine Cycle for Waste Heat Recovery of Coal Fired Power Plant (화력발전용 복수기 폐열 회수를 위한 유기랭킨사이클 시스템 열교환 특성 해석)

  • Jeong, Jinhee;Im, Seokyeon;Kim, Beomjoo;Yu, Sangseok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.1
    • /
    • pp.64-70
    • /
    • 2015
  • Organic Rankine cycle (ORC) is an useful cycle for power generation system with low temperature heat sources ($80{\sim}400^{\circ}C$). Since the boiling point of operating fluid is low, the system is used to recover the low temperature heat source of waste heat energy. In this study, a ORC with R134a is applied to recover the waste energy of condenser of coal fired power plant. A system model is developed via Thermolib$^{(R)}$ under Simulink/MATLAB environment. The model is composed of a refrigerant heat exchanger for heat recovery from coal fired condenser, a drum, turbine, heat exchanger for ORC heat rejection, storage tank, water recirculation pump and water drip pump. System analysis parameters were heat recovery capacity, type of refrigerants, and types of turbines. The simulation model is used to analyze the heat recovery capacity of ORC power system. As a result, increasing the overall heat transfer coefficient to become the largest of turbine power is the most economical.