• Title/Summary/Keyword: Recirculation ratio

Search Result 284, Processing Time 0.02 seconds

Conjugate Heat Transfer in a Vertical Channel with Protrunding Heat Source (돌출된 열원이 부착된 수직 채널내 복합열전달)

  • Kim, Ui-Gwang;Baek, Byeong-Jun;Jo, Byeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.741-751
    • /
    • 1996
  • The coupled conduction and convection heat transfer from the protruding heat source in a vertical channel is numerically investigated. Conjugate solution of the two-dimensional energy equation is obtained for the incompressible air flow over the rectangular block with local heat source. It was found that several recirculation zones and separation bubble near the block were related to Re and Gr. And the results show that fractions of the heat transfer through each of the block face, maximum temperature of the block and the relative effect of each parameter on the maximum temperature and heat transfer.

Affect of Flow Condition on Formation of Flameless Combustion (무화염 형성에 영향을 미치는 유동조건에 대한연구)

  • Hong, Seong Weon;Lee, Pil Hyong;Cha, Chun Loon;Song, Ki Jong;Im, Hyun Jin;Hwang, Sang Soon
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.189-192
    • /
    • 2012
  • The flameless combustion has been considered as one of the promising combustion technology for high energy efficiency and reducing NOx and CO emissions. To investigate the effects of fluid conditions on the formation of flameless combustion, a numerical approach was performed. The flameless combustion possesses lower temperature region and more uniform temperature distribution than conventional flame. The results show that the flow rate of the system which mainly influence on recirculation ratio is the most important parameter for flameless combustion.

  • PDF

Intake Flow Simulation in a D.I. Engine Cylinder (디젤엔진 흡입과정에서 실린더내의 시뮬레이션)

  • 강신형;김응서;송명호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.65-74
    • /
    • 1986
  • A computer program was developed to predict swirling steady axisymmetric turbulent flows by extending TEACH Code. It was applied to a reciprocating engine cylinder with a intake valve on the flat head. Flows were assumed to be steady and swirling. Effects of Reynolds number, the valve lift, and the swirl ratio on flow patterns and turbulence were investigated numerically. Flow patterns were reasonably predicted in comparison with experimental results. Length of the recirculation zone was shortened with increasing valve lifts and swirl ratios. Static pressure distributions show maximum value near the reattachment point of the incoming circular jet and minimum value near the maximum width of the valve attached recirculation zone.

  • PDF

Experimental Study on the Partial Oxidation Reforming of CH4/O2 Mixture in Two-Section Porous Media at High Pressure Conditions (고압 분위기에서 CH4/O2 혼합기의 2단 다공체 내 부분산화 개질에 관한 실험적 연구)

  • Guahk, Young Tae;Lee, Dae Keun;Kim, Seung Gon;Ko, Chang-Bog;Park, Jong-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.73-74
    • /
    • 2015
  • Synthesis gas such as hydrogen and carbon monoxide was produced from $CH_4/oxygen$ mixture using insulated pressurized porous media combustor. Experimentally, two cylindrical SiC foams with the different pore density were piled up in a quartz tube and fully premixed mixture was supplied in the axial direction. After stabilizing fuel-rich flame at the interface of the two foams at several pressure conditions, mole fractions of synthesis gases were measured by gas chromatography. Heat recirculation through the inner foam structure could extend the flow velocity of stable region over the laminar burning velocity. As the pressure increased, the rich flammability limit, $H_2/CO$ ratio, and module M increased.

  • PDF

Simultaneous Reduction of Smoke and NOx with Oxygenated Fuel(DMC) and Cooled EGR method in Diesel Engine (디젤기관에서 함산소연료(DMC)와 Cooled EGR방법에 의한 매연과 NOx의 동시저감)

  • Oh, Y.T.;Choi, S.H.
    • Journal of Power System Engineering
    • /
    • v.6 no.1
    • /
    • pp.27-35
    • /
    • 2002
  • In this paper, the effect of oxygen component in fuel on the exhaust emissions has been investigated for direct injection diesel engine. It is tested to estimate change of engine performance and exhaust emission characteristics for the commercial diesel fuel and oxygenate blended fuel which has four kinds of mixed ratio. And, the effects of exhaust gas recirculation(EGR) on the characteristics of NOx emission and brake specific fuel consumption rate have been investigated. Dimethyl carbonate(DMC) contains oxygen component 53.3% in itself, and it is a kind of effective oxygenated fuel of carbonate group that the smoke emission of DMC is reduced remarkably in comparison with commercial diesel fuel, that is, it can supply oxygen component sufficiently at higher loads and speeds in diesel engine. It was found that simultaneous reduction of smoke and NOx was achieved with oxygenated fuel and EGR method.

  • PDF

Simultaneous Removal of Carbon and Ammonia Nitrogen from Recirculation Water in High Density Seawater Aquaculture Farm (고밀도 해산어 양식장 순환수로부터 유기물 및 암모니아질소 동시 제거)

  • 정병곤;김문태;이헌모
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.1
    • /
    • pp.15-22
    • /
    • 2003
  • Treatability tests were conducted using EMC process to study the feasibility of applying this process as recycling-water treatment system in high density seawater aquaculture farm. To study the effect of organic and ammonia nitrogen loading on system performance, hydraulic retention time of reactor was reduced gradually from 12hr to 10min. The conclusions are can be summarized as follows. When the system HRT was reduced from 12hr to 10 min gradually, there was little noticeable change(reduction) in ammonia nitrogen removal efficiencies until 2hr of HRT, however, removal efficiencies were decreased dramatically when the system was operated under the HRT of less than 2hr. In case of organics(COD), there was no dramatic deterioration in removal efficiencies depending on HRT reduction. More than 90% of removal efficiencies were maintained successfully when the system was operated at the HRT of 10 min. In case of system performance depending on media packing ratio in reactor, there was little difference in each reactor performance depending on media packing ratio in reactor when the reactors were operated under the HRT of longer than 1hr, however, differences in reactor performances were considerably evident when the reactors were operated under the HRT of shorter than 1hr. That is, the more reactor was packed, the better reactor performed. When comparing reactor performance among 25%, 50%, 75% packed reactor, it can be judged that media packing ratio more than 50% plays no significant role in increasing reactor performance. For this reason, packing the media less than 50% is more reasonable way in view of economic. Such a tendency well agreed with the variation of ammonia-nitrogen removal efficiencies according to the media packing ratio in reactors at each HRT. Difference in effluent ammonia-nitrogen concentration between 50% media packing reactor and 75% media packing reactor was negligible. When comparing with the results of 25% packing reactor, difference was not so great.

Mixed Flow Characteristics of Aeration Process for Recirculation Aquaculture System Using Ejector (이젝터를 이용한 순환양식 시스템 폭기공정의 혼합유동 특성)

  • Park, Sang Kyoo;Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.847-854
    • /
    • 2013
  • The objective of this study is to experimentally investigate the mixed flow and oxygen transfer characteristics of a horizontally injected aeration process using an annular nozzle ejector. The flow rate ratio, pressure ratio and ejector efficiency are calculated using the measured flow rate and pressure with the experimental parameters of the ejector pitch and primary flow rate. The visualization images of mixed flow issuing from the ejector are analyzed qualitatively, and the volumetric oxygen transfer coefficients are calculated using the measured dissolved oxygen concentration. The mixed flow behaves like a buoyancy jet or horizontal jet owing to the momentum of primary flow and air bubble size. The buoyancy force of the air bubble and the penetration of mixed flow are found to be important parameters for the oxygen transfer rate owing to the contact area and time of two phases.

Integrated System of RBC-lime Precipiatation for Simultaneous Removal of Organics and Nutrients (회전원판공정과 화학침전공정 조합을 이용한 유기물과 질소*인의 동시제거)

  • 박종안;허준무;손부순
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.132-140
    • /
    • 1998
  • Laboratory-scale experiments were conducted using a three-stage rotating biological contactor unit followed by lime precipitation and sedimentation with effluent recycle to the first stage. The purpose of this study was to evaluate the effects of hydraulic loadings of 0.031-0.076 $m^3/m^2/d and recycle ratio of 1 to 3 on the simultaneous removal of organics and nutrients from domestic wastewater. Lime was added to maintain pH of 10.4-11.0 in the coagulation-flocculation reactor. Results showed that the highest nitrogen removal rate of 70.5% occurred at the lower hydraulic loading of 0.031 $m^3/m^2/d at a recirculation rate of 300%, and similarly, highest nitrification occurred at the same hydraulic loading and recycle ratio. Concentration of ammonia nitrogen in the effluent was less than 1 mg/l at the same operating conditions for higher nitrogen removal. Whereas, high BOD and COD removal was observed at hydraulic loading rate of 0.054 $m^3/m^2/d, and high removal of organic matter was evident from the consistent low COD and BOD value. Results obtained from the operating condition of higher loading rate, 300% of recycle rate showed the highest removals. Increasing in recycle rate and hydraulic loading rate increased the volatile solids fraction of the sludges generated to the extent of 47% at 0.076 $m^3/m^2/d hydraulic loading and 300% recirculation rate. Since pH in the flocculator was maintained at the pH of 10.4-11.0, above 90% removal of phosphorus was obtained. Average concentration of suspended solids was always maintained over 40 mg/l in the effluent. Therefore an RBC unit operating at a hydraulic loading near 0.031 $m^3/m^2/d with a recycle rate of 300% is a viable and feasible alternate conditions to produce an effluent with relative low organic matter and phosphorus, provided that there is a neutralization unit to control the pH and SS of the effluent.

  • PDF

MEASUREMENT OF $CO_2$ CONCENTRATION AND A/F RATIO USING FAST NDIR ANALYZER ON TRANSIENT CONDITION OF SI ENGINE

  • Lee, S.W.;Kim, W.S.;Lee, J.H.;Park, J.I.;Yoo, J.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.385-390
    • /
    • 2006
  • A fast response $CO_2$ analyzer has been developed to study transient characteristics on an SI engine. The analyzer has the delay time of 4.5 ms and time constant of 2.8 ms, which is fast enough to measure $CO_2$ concentration on a transient condition. Wide range of A/F(Air/Fuel) ratio can be estimated using the analyzer with an additional switch type oxygen sensor. The results of measurement of $CO_2$ concentration and A/F ratio on a transient condition including rapid acceleration/deceleration and EGR(Ehxaust Gas Recirculation) on/off are presented and compared with a commercial exhaust gas analyzer and UEGO(Universial Exhaust Gas Oxyzen) sensor.

Effects of Eccentric Ratio Between Stationary Upstream Circular Cylinders on Heat Transfer of a Heated Downstream Cylinder (정지된 상류의 원형실린더 사이의 편심률이 후방실린더의 열전달에 미치는 영향)

  • Riu, Gap-Jong;Park, Cheol-Woo;Jang, Chung-Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1449-1458
    • /
    • 2004
  • The influence of eccentric(=staggeredness) ratio between stationary upstream circular cylinders on heat transfer characteristics of a heated downstream circular cylinder installed in a channel was investigated experimentally. In order to enhance the heat transfer rate of the heated downstream cylinder surface, we have changed the configuration of upstream cylinder. As a result, we were able to obtain local time-averaged convective heat transfer enhancement of the heated cylinder by the relative replacement of upstream cylinder. This is basically attributed to the mean flow structure change, such as flow separation, vortex shedding, and recirculation of the upstream cylinder including the reattachment and new thermal boundary developed at the downstream cylinder which are the results of the increase of the staggeredness ratio.