• Title/Summary/Keyword: Recirculation Rate

Search Result 347, Processing Time 0.028 seconds

Loss of coolant accident analysis under restriction of reverse flow

  • Radaideh, Majdi I.;Kozlowski, Tomasz;Farawila, Yousef M.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1532-1539
    • /
    • 2019
  • This paper analyzes a new method for reducing boiling water reactor fuel temperature during a Loss of Coolant Accident (LOCA). The method uses a device called Reverse Flow Restriction Device (RFRD) at the inlet of fuel bundles in the core to prevent coolant loss from the bundle inlet due to the reverse flow after a large break in the recirculation loop. The device allows for flow in the forward direction which occurs during normal operation, while after the break, the RFRD device changes its status to prevent reverse flow. In this paper, a detailed simulation of LOCA has been carried out using the U.S. NRC's TRACE code to investigate the effect of RFRD on the flow rate as well as peak clad temperature of BWR fuel bundles during three different LOCA scenarios: small break LOCA (25% LOCA), large break LOCA (100% LOCA), and double-ended guillotine break (200% LOCA). The results demonstrated that the device could substantially block flow reversal in fuel bundles during LOCA, allowing for coolant to remain in the core during the coolant blowdown phase. The device can retain additional cooling water after activating the emergency systems, which maintains the peak clad temperature at lower levels. Moreover, the RFRD achieved the reflood phase (when the saturation temperature of the clad is restored) earlier than without the RFRD.

A Review of the Efficacy of Ultraviolet C Irradiation for Decontamination of Pathogenic and Spoilage Microorganisms in Fruit Juices

  • Ahmad Rois Mansur;Hyun Sung Lee;Chang Joo Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.419-429
    • /
    • 2023
  • Ultraviolet C (UV-C, 200-280 nm) light has germicidal properties that inactivate a wide range of pathogenic and spoilage microorganisms. UV-C has been extensively studied as an alternative to thermal decontamination of fruit juices. Recent studies suggest that the efficacy of UV-C irradiation in reducing microorganisms in fruit juices is greatly dependent on the characteristics of the target microorganisms, juice matrices, and parameters of the UV-C treatment procedure, such as equipment and processing. Based on evidence from recent studies, this review describes how the characteristics of target microorganisms (e.g., type of microorganism/strain, acid adaptation, physiological states, single/composite inoculum, spore, etc.) and fruit juice matrices (e.g., UV absorbance, UV transmittance, turbidity, soluble solid content, pH, color, etc.) affect the efficacy of UV-C. We also discuss the influences on UV-C treatment efficacy of parameters, including UV-C light source, reactor conditions (e.g., continuous/batch, size, thickness, volume, diameter, outer case, configuration/arrangement), pumping/flow system conditions (e.g., sample flow rate and pattern, sample residence time, number of cycles), homogenization conditions (e.g., continuous flow/recirculation, stirring, mixing), and cleaning capability of the reactor. The collective facts indicate the immense potential of UV-C irradiation in the fruit juice industry. Existing drawbacks need to be addressed in future studies before the technique is applicable at the industrial scale.

Plant-scale experiments of an air inflow accident under sub-atmospheric pressure by pipe break in an open-pool type research reactor

  • Donkoan Hwang;Nakjun Choi;WooHyun Jung;Taeil Kim;Yohan Lee;HangJin Jo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1604-1615
    • /
    • 2023
  • In an open-pool type research reactor with a downward forced flow in the core, pipes can be under sub-atmospheric pressure because of the large pressure drop at the reactor core in the atmospheric pool. Sub-atmospheric pressure can result in air inflow into the pipe from the pressure difference between the atmosphere and the inside of the pipe, which in a postulated pipe break scenario can lead to the breakdown of the cooling pump. In this study, a plant-scale experiment was conducted to study air inflow in large piping systems by considering the actual operational conditions of an advanced research reactor. The air inflow rate was measured, and the entrained air was visualized to investigate the behavior of air inflow and flow regime depending on the pipe break size. In addition, the developed drift-flux model for a large vertical pipe with a diameter of 600 mm was compared with other correlations. The flow regime transition in a large vertical pipe under downward flow was also studied using the newly developed drift-flux model. Consequently, the characteristics of two-phase flow in a large vertical pipe were found to differ from those in small vertical pipes where liquid recirculation was not dominant.

Experimental Study of Effect of CO2 Addition on Oxy-Fuel Combustion in Triple Concentric Multi-Jet Burner (다공 동축 버너를 이용한 순산소 연소에서 CO2 첨가가 화염에 미치는 영향에 관한 실험적 연구)

  • Kim, Seung-Hwan;Park, Jang-Hee;Lee, Dae-Keun;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.409-416
    • /
    • 2010
  • The use of oxy-fuel combustion and flue gas recirculation (FGR) for $CO_2$ reduction has been studied by many researchers. This study focused on the characteristics of oxy-fuel combustion and the effects of $CO_2$ addition from the point of view of oxygen feeding ratio (OFR) and the position of $CO_2$ addition in order to reproduce an FGR system with a triple concentric multi-jet burner. Oxy-fuel combustion was stable at all OFRs at a fuel flow-rate of 15 lpm, which corresponds to an equivalence ratio of 0.93; however, the structure and length of the flame varied at different OFRs. When $CO_2$ was added in oxy-fuel combustion, various stability modes such as stable, transient, quasistable, unstable, and blow-out were observed. The temperature in the combustion chamber decreased upon $CO_2$ addition in all conditions, and the maximum reduction in temperature was below 1800 K. $CO_2$ concentration with respect to height varied with the volume percent of $CO_2$ at the nozzle tip.

Morphology of Neoheterobothrium hirame parasitic in the oral cavity of olive flounder (Paralichthys olivaceus) and histopathology of diseased fish (넙치(Paralichthys olivaceus) 구강에 기생하는 Neoheterobothrium hirame의 형태 및 감염어의 병리조직)

  • Lee, Beom-Seok;Kim, Jeong-Ho;Kim, Taeho;Jung, Sung-Ju
    • Journal of fish pathology
    • /
    • v.33 no.1
    • /
    • pp.7-14
    • /
    • 2020
  • A disease that manifested severe anemia of the gills occurred in the olive flounder (Paralichthys olivaceus), which was cultured for 5-6 months with a recirculation water system in the laboratory. Microscopic observations showed immature parasite in the gills and mature adults in the oral cavity. The matured parasite was 5.60-9.32 (7.42) mm in total length, with 4 pairs of clamps on the pedunculated haptor, which was separated from the body proper by a long isthmus. From the morphological observations of the larvae, it was identified as Neoheterobothirum hirame belonging to the monogenea. The average hematocrite of infected fish was 10.3 ± 2.8%, significantly lower than that of normal flounder 31.4 ± 4.2%. Histopathologically, fish infected with N. hirame exhibited reduced numbers of erythrocytes in blood vessels of the gill filament and lamellae, reduced red pulp area of the spleen, and hepatocyte atrophy. From the above results, the cause of severe anemia in olive flounder was identified as N. hirame infection. This study shows an example where the growth of pathogens can be a problem in the recirculation system due to low water exchange rate.

Feasibility Study of Applying EMMC Process to Recirculation Water Treatment System in High Density Seawater Aquaculture Farm through Laboratory Scale Reactor Operation (실험실규모 반응조 운전을 통한 고밀도 해산어 양식장 순환수 처리공정으로서 EMMC공정의 적용 가능성 연구)

  • Jeong Byung Gon;Kim Byung Hyo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.3
    • /
    • pp.116-121
    • /
    • 2004
  • Treatability tests were conducted to study the feasibility of EMMC process as a recycling-water treatment system in high density seawater aquaculture farm. To study the effect of organic and ammonia nitrogen loading rate on system performance, hydraulic retention time was reduced gradually from 12hr to 10min. The conclusions are can be summarized as follows. When the system HRT was reduced from 12hr to 2hr gradually, there was little noticeable change(reduction) in ammonia nitrogen removal efficiencies. However, removal efficiencies were decreased dramatically when the system was operated under the HRT of less than 2hr. In case of organics(COD), there was no dramatic change in removal efficiencies depending on HRT reduction. COD removal efficiencies were maintained successfully higher than 9% when the system was operated at tile HRT of 10 min. System performances depending on media packing ratio in the reactors were also evaluated. There were little differences in each reactor performances depending on media packing ratio in reactor when the reactors were operated under the HRT of longer than 1hr. However, differences in reactor performances were considerably evident when the reactors were operated under the HRT of shorter than 1hr. When comparing reactor performance among 25%, 50%,7 5% packed reactor, it can be judged that media packing ratio more than 50% plays no significant role in increasing reactor performance. For this reason, packing the media less than 50% is more reasonable way in view of economic. Such a tendency shown in COD removal efficiencies well agreed with the variation of ammonia-nitrogen removal efficiencies according to the media packing ratio in reactors at each HRT. Difference in effluent ammonia-nitrogen concentration between 50% media packing reactor and 75% media packing reactor was negligible. When comparing with the results of 25% packing reactor, difference was not so great.

  • PDF

Nitrogen Removal in Column Wetlands Packed with Synthetic Fiber Treating Piggery Stormwater (축산단지 강우 유출수 처리를 위한 합성섬유충진 습지의 질소제거에 관한 연구)

  • Cheng, Jing;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.68-75
    • /
    • 2016
  • A set of lab-scale polymer synthetic fiber packed column wetlands composing three columns (CW1, CW2 and CW3) with different hydraulic regimes, recirculation frequencies and pollutant loading rates, were operated in 2012. Synthetic fiber tested as an alternative wetland medium for soil mixture or gravel which has been widely used, has very high pore size and volume, so that clogging opportunity can be greatly avoided. The inflow to the wetland was artificial stormwater. All the wetlands achieved effective removal of TSS (94%~96%), TCOD (68%~73%), TN (35%~58%), TKN (62%~73%) and NH4-N (85%~ 99%). Particularly, it was observed that COD was released from the fiber during one distinct period in all wetlands. This was probably due to the degradation of polymer fiber, and the released organic matters were found to serve as carbon source for denitrification. In addition, with longer retention time and frequent recirculation, lower effluent concentration was observed. With higher pollutant loading rate, higher nitrification and denitrification rates were achieved. However, although organic matters were released from the fiber, the lack of carbon source was still the limiting factor for the system since the release persisted only for 40 days.

Conditions Affecting Vegetable Waste Composting (야채쓰레기의 효율적 퇴비화를 위한 운영조건)

  • Choi, Jung-Young;Namkoong, Wan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.2 no.1
    • /
    • pp.19-29
    • /
    • 1994
  • The purpose of this study was to investigate the feasibility of composting of vegetable wastes containing high moisture. The parameters investigated were the effect of energy source addition, difference in bulking agent and recirculation of leachate produced during composting. Laboratory scale composting reactors were used in this study. Chinese cabbages were used as a vegetable waste. Dog food was added to the vegetable waste as a energy source. Wood chips and leaves of platan were used as bulking agents. There may be an appropriate amount of energy source to be added for composting high moisture content vegetable waste. In this study, the appropriate amount of energy source was 20% of the vegetable waste by weight basis. Recirculation of total amount of leachate produced each day on the same day may not be an appropriate approach due to the significant heat-quenching effect. When the total amount of leachate produced was equally devided and recirculated everyday through the whole composting period, the heat-quenching effect was comparatively less significant. There were no notable differences in the temperature profile and the $CO_2$ evoluation rate when leaves were used instead of wood chips as bulking agents. Considering waste recycling, it is desirable to use leaf waste as bulking agents if available, because the leaves are also wastes to be disposed of.

  • PDF

Behavior of the herbicide metolachlor in carps (제초제 metolachlor의 잉어체내 행적)

  • Kyung, Kee-Sung;Kim, Jin-Wha;Lee, Byung-Moo;Oh, Byung-Youl;Jeong, Young-Ho;Lee, Jae-Koo
    • The Korean Journal of Pesticide Science
    • /
    • v.3 no.2
    • /
    • pp.54-59
    • /
    • 1999
  • In order to investigate the behavior of the herbicide metolachlor [2-chloro-6'-ethyl-N-(2-methoxy-1-methylethyl)aceto-O-toluidide] in fish, carps (Cyprinus carpio L.) were exposed to the herbicide at $LC_{10}$(1.93 mg/L) for 4 days. Metolachlor dissolved in water was absorbed rapidly into carps to mark the maximum concentration 6 hours after exposure. The amounts of the $^{14}C$-metolachlor and its metabolites absorbed in gall were much higher than those in the other parts, strongly suggesting that biliary excretion involving enterohepatic recirculation could be an important route for the elimination of metolachlor. The $^{14}C$-radioactivity distributed into aqueous phase fraction in test water and in carp extract was increased in time-dependent manner. Extraction rate of $^{14}C$ absorbed in carp tissues was decreased remarkably up to 6 hours after exposure, suggesting that the possible polar metabolites of metolachlor were transformed into the conjugates to form non-extractable bound residues.

  • PDF

Techno-Economic Analysis of Reversible Solid Oxide Fuel Cell System Couple with Waste Steam (폐스팀을 이용한 가역 고체산화물 연료전지의 기술적 경제적 해석)

  • GIAP, VAN-TIEN;LEE, YOUNG DUK;KIM, YOUNG SANG;AHN, KOOK YOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.1
    • /
    • pp.21-28
    • /
    • 2019
  • Reversible solid oxide fuel cell (ReSOC) system was integrated with waste steam for electrical energy storage in distributed energy storage application. Waste steam was utilized as external heat in SOEC mode for higher hydrogen production efficiency. Three system configurations were analyzed to evaluate techno-economic performance. The first system is a simple configuration to minimize the cost of balance of plant. The second system is the more complicated configuration with heat recovery steam generator (HRSG). The third system is featured with HRSG and fuel recirculation by blower. Lumped models were used for system performance analyses. The ReSOC stack was characterized by applying area specific resistance value at fixed operating pressure and temperature. In economical assessment, the levelized costs of energy storage (LCOS) were calculated for three system configurations based on capital investment. The system lifetime was assumed 20 years with ReSOC stack replaced every 5 years, inflation rate of 2%, and capacity factor of 80%. The results showed that the exergy round-trip efficiency of system 1, 2, 3 were 47.9%, 48.8%, and 52.8% respectively. The high round-trip efficiency of third system compared to others is attributed to the remarkable reduction in steam requirement and hydrogen compression power owning to fuel recirculation. The result from economic calculation showed that the LCOS values of system 1, 2, 3 were 3.46 ¢/kWh, 3.43 ¢/kWh, and 3.14 ¢/kWh, respectively. Even though the systems 2 and 3 have expensive HRSG, they showed higher round-trip efficiencies and significant reduction in boiler and hydrogen compressor cost.