• Title/Summary/Keyword: Recirculation Flow

Search Result 656, Processing Time 0.027 seconds

PIV Measurement of Pulsatile Flows in 3D Curved Tubes Using Refractive Index Matching Method (3차원 곡관에서의 굴절률 일치법을 이용한 맥동 유동의 PIV 측정)

  • Hong, Hyeon Ji;Ji, Ho Seong;Kim, Kyung Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.8
    • /
    • pp.511-517
    • /
    • 2016
  • Three-dimensional models of stenosis blood vessels were prepared using a 3D printer. The models included a straight pipe with axisymmetric stenosis and a pipe that was bent $10^{\circ}$ from the center of stenosis. A refractive index matching method was utilized to measure accurate velocity fields inside the 3D tubes. Three different pulsatile flows were generated and controlled by changing the rotational speed frequency of the peristaltic pump. Unsteady velocity fields were measured by a time-resolved particle image velocimetry method. Periodic shedding of vortices occurred and moves depended on the maximum velocity region. The sizes and the positions of the vortices and symmetry are influenced by mean Reynolds number and tube geometry. In the case of the bent pipe, a recirculation zone observed at the post-stenosis could explain the possibility of blood clot formation and blood clot adhesion in view of hemodynamics.

Hemodynamic Characteristics Affecting Restenosis after Percutaneous Transluminal Coronary Angioplasty with Stenting in the Angulated Coronary Stenosis

  • Lee, Byoung-Kwon;Kwon, Hyuck-Moon;Roh, Hyung-Woon;Cho, Min-Tae;Suh, Sang-Ho
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.1 no.1
    • /
    • pp.13-23
    • /
    • 2003
  • Backgrounds: The present study in angulated coronary stenosis was to evaluate the influence of velocity and wall shear stress (WSS) on coronary atherosclerosis, the changes of hemodynamic indices following coronary stenting, as well as their effect of evolving in-stent restenosis using human in vivo hemodynamic parameters and computed simulation quantitatively and qualitatively. Methods: Initial and follow-up coronary angiographies in the patients with angulated coronary stenosis were performed (n=80). Optimal coronary stenting in angulated coronary stenosis had two models: < 50 % angle changed(model 1, n=43), > 50% angle changed group (model 2, n=37) according to percent change of vascular angle between pre- and post-intracoronary stenting. Flow-velocity wave obtained from in vivo intracoronary Doppler study data was used for in vitro numerical simulation. Spatial and temporal patterns of velocity vector and recirculation area were drawn throughout the selected segment of coronary models. WSS of pre/post-intracoronary stenting were calculated from three-dimensional computer simulation. Results: Follow-up coronary angiogram demonstrated significant difference in the percent of diameter stenosis between two groups (group 1: $40.3{\pm}30.2$ vs. group 2: $25.5{\pm}22.5%$, p<0.05). Negative WSS area on 3D simulation, which is consistent with re-circulation area of velocity vector, was noted on the inner wall of post-stenotic area before stenting. The negative WSS was disappeared after stenting. High spatial and temporal WSS before stenting fell into within physiologic WSS after stenting. This finding was prominent in Model 2 (p<0.01) Conclusions: The present study suggests that hemodynamic forces exerted by pulsatile coronary circulation termed as WSS might affect on the evolution of atherosclerosis within the angulated vascular curvature. Moreover, geometric change, such as angular difference between pre / post-intracoronary stenting might give proper information of optimal hemodynamic charateristics for vascular repair after stenting.

  • PDF

Evaluation of Biological Organic and Nutrient Removal Performance in Intermittent MBR Systems by Computer Simulation (컴퓨터 시뮬레이션을 이용한 간헐폭기 MBR시스템에서의 유기물 및 영양염류 처리 성능 평가)

  • Yoo, Hosik;Rhee, Seung-Whee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.3
    • /
    • pp.82-92
    • /
    • 2013
  • The Intermittent Aeration MBR systems have the advantage of controlling reaction time by changing aeration period and are one of economic BNR systems since these processes do not require MLSS recirculation that demands capital and operation costs. In this study, two intermittent aeration MBR systems were studied by computer simulation: an intermittent aeration MBR system that had both 1hr/1hr and 4hr/4hr aeration/unaeration periods at intermittent reactor and NEW INTERMITTENT-process that was an energy saving process and certified as a new process by Korean government. Since DO concentration reached only at 0.23mg/L at intermittent reactor when it was aerated, the Intermittent aeration MBR system having 1hr/1hr aeration/unaeration period showed simultaneous nitrification/denitrification and had the highest nitrogen and phosphorus removal efficiencies that were 57% and 55%, respectively. Since this study was based on the constant influent flow and characteristics, more studies are needed to define the operational characteristics of intermittent aeration MBR systems under dynamic influent conditions.

NOx Emission Characteristics Depending on the Variations in Yaw Angle of the Secondary Air Nozzles in a Coal Fired Boiler (연소용 이차공기 수평분사각에 따른 질소산화물(NOx) 배출특성)

  • Kim, Young-Joo;Park, Ho-Young;Lee, Sung-No
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.272-277
    • /
    • 2009
  • Three dimensional numerical analysis for the coal fired boiler has been performed to investigate the effect of yaw angle variation of the secondary air nozzles on the combustion characteristics and NOx emission. It was found that the prediction gives a good agreement with plant data. The increase in yaw angle up to $20^{\circ}$ have results in the decrease in NOx emission at furnace exit and recirculation flow intensity, together with the increase of unburned carbon in ash. It also has been recognized the remarkably change in configuration of fire ball with increase in yaw angle. The results from this study would be valuable in the case of the combustion modification of the corner firing coal-fired utility boiler.

Turbulent Combustion Characteristics of a Swirl Injector in a Gas Turbine Annular Combustor Using LES and Level-set Flamelet (LES와 Level-set Flamelet 기법을 이용한 가스터빈 환형 연소기용 스월 분사기의 난류 연소 특성)

  • Kim, Lina;Hong, Ji-Seok;Jeong, Won Cheol;Yoo, Kwang-Hee;Kim, Jong-Chan;Sung, Hong-Gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.1-9
    • /
    • 2014
  • To investigate the flame dynamics in an annular combustor with single swirl injector, a 3D large-eddy simulation (LES) and a level-set flamelet turbulent combustion model have been implemented. The LM6000 developed by GEAE has been used as the combustor of concern and boundary conditions are based on experimental data. The strong central toroidal recirculation zone induced by the volume expansion of the combustion gas and the vortex breakdown continuously occurred through the procession of the vortex with decreasing strength, are observed.

Operating Characteristics of 0.4 MW-Scale Gas Dispersion Type FGD Absorber (0.4 MW급 가스분사식 배연탈황 흡수탑의 운전 특성)

  • An, Hi-Soo;Kim, Ki-Hyoung;Park, Seung-Soo;Park, Kwang-Kyu;Kim, Young-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.4
    • /
    • pp.415-422
    • /
    • 2008
  • This study was carried out to investigate the effect of operating and design conditions of gas dispersion type of absorber on $SO_2$ removal efficiency. pH difference between upper and lower part of gas dispersing plate of absorber was 0.2, which was relatively low. This was supposed that recirculation capacity of absorbing liquid between froth zone and reaction zone of absorber be increased by oxidation air injection through liquid riser which acted as liquid pump. Test results showed that $SO_2$ removal efficiency was more sensitive than absorber ${\Delta}P$. High $SO_2$ removal even at lower pH resulted from very low concentration of $HSO_3^-$ ion in absorbing liquid because of direct supply of dissolved oxygen into froth zone. 96% of $SO_2$ removal efficiency was obtained under the condition of absorber pH 5.2, flue gas flow rate of $1,530\;Nm^3/hr$, inlet $SO_2$ concentration of 800 ppm, absorber ${\Delta}P$ of 250mmAq. The following equation by a multiple linear regression was obtained to describe the relationship between $SO_2$ removal and operating variables. $$f=1-{\exp}(-1.3939+1.060pH+0.0139{\Delta}P-0.00267G-0.000064SO_2Conc.),\;R^2=0.9719$$

The Photocatalytic Decomposition of Trichloroethylene(TCE) with $TiO_2$ ($TiO_2$광촉매를 이용한 Trichloroethylene(TCE)의 광분해 반응)

  • 하진욱
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.2
    • /
    • pp.57-62
    • /
    • 2000
  • The photocatalytic degradation of trichloroethylene(TCE) in water on various types of$TiO_2$ was studied. Surface properties of $TiO_2$were characterized by XRD, SEM, and BET in our previous work(23) . $TiO_2$from Aldrich has 100$\%$pure anatase, TiO$_2$from KIER has 100$\%$ pure rutile structure, and P25-TiO$_2$from Degussa has mixed structure of anatase(75$\%$) and rutile(25$\%$) . Firstly, optimum conditions for TCE degradation were examined in this study. Results showed that optimum loading amount of catalyst was 0.1 wt% and recirculation flow rate of mixture(distilled water and TCE) was 200 cc/min. Secondly, the effect of $TiO_2$structure on TCE degradation was examined. Results revealed that anatase structure generally has better photocatalytic activity than rutile structure. Especially, mixed structure(Degussa P25-$TiO_2$) has the highest activity due to small particle size and large specific surface area.

  • PDF

A Study on Effects of Recirculated Exhaust Gas upon $NO_x$ and Soot Emissions of a Marine Diesel Engine with Scrubber EGR System (박용 디젤기관의 $NO_x$ 및 매연 배출물에 미치는 스크러버형 EGR 시스템 재순환배기의 영향에 관한 연구)

  • 배명환;하정호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.70-78
    • /
    • 2000
  • The effects of recirculated exhaust gas on the characteristics of ;$NO_x$ and soot emissions under a wide range of engine load have been experimentally investigated by a water-cooled, four-cylinder, indirect injection, four cycle and marine diesel engine operating at two kinds of engine speeds. The purpose of the present study is to develop the EGR control system for reducing $NO_x$ and soot emissions simultaneously in diesel engines. The EGR system is used to reduce NOx emissions, and a novel diesel soot removal apparatus with a cylinder-type scrubber for the experiment system which has 6 water injectors(A water injector is made up 144 nozzles with 1.0mm in diameter) is specially designed and manufactured to reduce the soot contents in the recirculated exhaust gas to intake system of the engines. The intake oxygen concentration obtained by the intake air flow and the oxygen concentration in the recirculated exhaust gas, and the exhaust oxygen concentration measured in exhaust manifold are used to analyse and discuss the influences of EGR on NOx and soot emissions. The experiments are performed at the fixed fuel injection timing of $15.3^{\circ}$ BTDC regardless of experimental conditions. It is found that $NO_x$ emissions decrease and soot emissions increase owing to the drop of intake oxygen concentration and exhaust oxygen concentration as EGR rate rises. Also, one can conclude that it is sufficient for the scrubber EGR system with a novel diesel soot removal apparatus to reduce $NO_x$ emissions, but not to reduce soot emissions.

  • PDF

The characteristics of temperature distribution, NOx and CO formation in a MILD combustor with the variation of equivalence ratio (당량비 변화에 따른 MILD 연소로의 온도 분포 및 NOx, CO 생성 특성)

  • Ha, Ji-Soo;Yu, Sang-Yeol;Sim, Sung-Hoon;Kim, Tae-Kwon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.485-490
    • /
    • 2010
  • MILD (Moderate and Intense Low Oxygen Dilution) combustion is a technique which is able to reduce NOx formation and to uniform temperature distribution in the furnace by recirculating the exhaust gas to the fresh air and fuel. This study focuses on finding optimal condition of MILD combustor by changing equivalence ratio with fuel and air flow. The present experiment employs six thermocouple sensors in the furnace, and two concentration probes of NOx and CO at the exhaust exit pipe respectively. The MILD combustion phenomena have been observed at the condition of equivalent ratios of 0.71~0.73, and the temperature uniformity, NOx and CO concentration are also examined at the MILD combustion condition.

The turbulent wake of a square prism with wavy faces

  • Lin, Y.F.;Bai, H.L.;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • v.23 no.2
    • /
    • pp.127-142
    • /
    • 2016
  • Aerodynamic effects, such as drag force and flow-induced vibration (FIV), on civil engineering structures can be minimized by optimally modifying the structure shape. This work investigates the turbulent wake of a square prism with its faces modified into a sinusoidal wave along the spanwise direction using three-dimensional large eddy simulation (LES) and particle image velocimetry (PIV) techniques at Reynolds number $Re_{Dm}$ = 16,500-22,000, based on the nominal width ($D_m$) of the prism and free-stream velocity ($U_{\infty}$). Two arrangements are considered: (i) the top and bottom faces of the prism are shaped into the sinusoidal waves (termed as WSP-A), and (ii) the front and rear faces are modified into the sinusoidal waves (WSP-B). The sinusoidal waves have a wavelength of $6D_m$ and an amplitude of $0.15D_m$. It has been found that the wavy faces lead to more three-dimensional free shear layers in the near wake than the flat faces (smooth square prism). As a result, the roll-up of shear layers is postponed. Furthermore, the near-wake vortical structures exhibit dominant periodic variations along the spanwise direction; the minimum (i.e., saddle) and maximum (i.e., node) cross-sections of the modified prisms have narrow and wide wakes, respectively. The wake recirculation bubble of the modified prism is wider and longer, compared with its smooth counterpart, thus resulting in a significant drag reduction and fluctuating lift suppression (up to 8.7% and 78.2%, respectively, for the case of WSP-A). Multiple dominant frequencies of vortex shedding, which are distinct from that of the smooth prism, are detected in the near wake of the wavy prisms. The present study may shed light on the understanding of the underlying physical mechanisms of FIV control, in terms of passive modification of the bluff-body shape.