• Title/Summary/Keyword: Recirculation Blower

Search Result 16, Processing Time 0.025 seconds

Modeling of Hydrogen Recirculation System for Fuel Cell Vehicle (수소 연료전지차의 재순환시스템 모델링 연구)

  • Kim, Jae-Hoon;Noh, Young-Gyu;Jeon, Ui-Sik;Lee, Jong-Hyun
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.4
    • /
    • pp.481-487
    • /
    • 2011
  • A fuel cell vehicle using a polymer electrolyte membrane fuel cell (PEM FC) as power source produces electric power by consuming the fuel, hydrogen. The unconsumed hydrogen is recirculated and reused to gain higer stack efficiency and to maintain the humidity in the anode side of the stack. So it is needed considering fuel efficiency to recirculated hydrogen. In this study, the indirect hydrogen recirculation flow rate measurement method for fuel cell vehicle is presented. By modeling of a convergent nozzle ejector and a hydrogen recirculation blower for the hydrogen recirculation of a PEM FC, the hydrogen recirculation flow rate was calculated by means of the mass balance and heat balance at Anode In/Outlet.

Development of Hydrogen Recirculation Blower for Fuel Cell Vehicle by Flow Analysis (유동해석에 의한 연료전지용 수소 재순환 블로워 개발)

  • Shim, Chang-Yeul;Hong, Chang-Oug;Kim, Young-Soo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.684-689
    • /
    • 2005
  • Parametric calculation were conducted to estimate performance of variable geometry of hydrogen recirculation blower for fuel cell vehicle. The pressure rise and efficiency are effected by change of the geometric parameter of impeller and casing, and stripper clearance under various mass flow. Hydrodynamic performance were evaluated, and also the inner flow fields were investigated by CFD. Calculated results show good coincidence with experimental test results of total pressure performance. Performance of model designed by parametric calculations satisfied experimental data of verification model.

  • PDF

The Study of the Design and Control for the Hydrogen Recirculation Blower Noise and Vibration Reduction (수소 재순환 블로어 소음 진동 저감을 위한 설계 및 제어에 관한 연구)

  • Bae, Ho June;Ban, Hyeon Seok;Noh, Yong Gyu;Jang, Seok Yeong;Lee, Hyun Joon;Kim, Chi Myung;Park, Yong Sun
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.5
    • /
    • pp.509-515
    • /
    • 2014
  • At the fuel processing system (FPS) of fuel cell vehicle, hydrogen recirculation blower (HRB) is used for the recirculation of remained hydrogen after reaction. In this paper, noise and vibration improvement of HRB is studied by changing design and control. It is checked the campbell diagram and critical speed for stability of rotor, and housing stiffness is improved using simulation of frequency response function (FRF). A method is suggested that can decrease the unbalance amount of the rotor and impeller which main source of noise and vibration. In order to reduce the noise during deceleration of blower, electrical braking is applied and tested the risk impact of durability. Founded the optimum switching frequency of the motor control, and reduced the idle rpm by increasing of aerodynamic performance. The superiority of paper is proved by measurement of the improved product's noise and vibration.

Characteristics of Design Parameters on the Regenerative Blower Used for Building Fuel Cell System (건물 연료전지용 재생블로어 설계변수 특성연구)

  • Jang, Choon-Man;Lee, Jong-Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.10
    • /
    • pp.739-744
    • /
    • 2012
  • This paper describes the blower performance used for single-stage high pressure regenerative blower. The blower considered is widely applied to the field of a fuel cell system, a medical equipment and a sewage treatment plant. Flow rate and rotating frequency of a impeller of the blower are considered as design parameters for the proper operation of the blower. Three-dimensional Navier-Stokes equations are introduced to analyze the performance and internal flow of the blower. Relatively good agreement between experimental measurements and numerical simulation is obtained. Throughout a numerical simulation, it is found that small and stable vortical flow generated inside the blade passage is effective to increase pressure and efficiency of the blower. Large local recirculation flow having low velocity in the blade passage obstructs the generation of stable vortical flow, thus increases the pressure loss of the blower. Detailed flow field inside the blower is also analyzed and discussed.

Performance Enhancement of 20kW Regenerative Blower Using Design Parameters

  • Jang, Choon-Man;Jeon, Hyun-Jun
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.3
    • /
    • pp.86-93
    • /
    • 2014
  • This paper describes performance enhancement of a regenerative blower used for a 20 kW fuel cell system. Two design variables, bending angle of an impeller and blade thickness of an impeller tip, which are used to define an impeller shape, are introduced to enhance the blower performance. Internal flow of the regenerative blower has been analyzed with three-dimensional Navier-Stokes equations to obtain the blower performance. General analysis code, CFX, is introduced in the present work. SST turbulence model is employed to estimate the eddy viscosity. Throughout the numerical analysis, it is found that the thickness of impeller tip is effective to increase the blower efficiency in the present blower. Pressure is successfully increased up to 2.8% compared to the reference blower at the design flow condition. And efficiency is also enhanced up to 2.98 % compared to the reference one. It is noted that low velocity region disturbs to make strong recirculation flow inside the blade passages, thus increases local pressure loss. Detailed flow field inside the regenerative blower is also analyzed and compared.

Performance and Internal Flow Analysis on Ring Blower (링 블로어 내부유동장 및 성능특성 연구)

  • Jang, Choon-Man;Han, Gi-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.4
    • /
    • pp.38-44
    • /
    • 2008
  • This paper describes the performance and internal flow characteristics of two-stage high pressure ring blower. Chamber-type test rig is designed and manufactured for the performance test of the ring blower. Detailed flow characteristics inside the impeller and casing are analyzed by three-dimensional numerical simulation. Throughout numerical simulation, non-uniform inflow to the impeller inlet and reverse flow are observed near the inlet duct of the blower. This non-uniform inflow makes various recirculation flow inside the casing with the complicated shape of casing. Low velocity region is locally formed near the both sides of impeller outlet due to the non-uniform inflow to the impeller, thus deteriorates the performance of a ring blower.

Performance Characteristics of the Double-Inlet Centrifugal Blower according to the Shape of an Impeller (임펠러 형상에 따른 양흡입 원심송풍기 성능특성)

  • Lee, Jong-Sung;Jang, Choon-Man
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.1
    • /
    • pp.28-34
    • /
    • 2014
  • This paper presents the performance enhancement of a double-inlet centrifugal blower by the shape optimization of an impeller. Two design variables, a number of blade and a length of chord, are introduced, and analyzed by a response surface method. Three-dimensional compressible Navier-Stokes equations are used to analyze the blower performance and the internal flow of the blower. Throughout the numerical simulation of the blower, blower efficiency can be increased by reducing separation flow generating from the blade leading edge of a blade pressure surface. It is noted that recirculation flow observed inside the blade passage induces low velocity region, thus increases pressure loss. Efficiency and pressure of the optimum blower are successfully increased up to 3% and 3.9% compared to those of reference blower at the design flow condition, respectively. Detailed flow field inside the blower is also analyzed and compared.

Characteristics of Leakage Flow on Regenerative Blower and Leakage-reducing Design for Performance Enhancement (재생형 블로워의 누설유동 특성과 누설유량 저감을 통한 성능 향상)

  • Choi, Min-Ho;Kim, Young-Hoon;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.4
    • /
    • pp.57-63
    • /
    • 2011
  • Regenerative blower is suitable for hydrogen recirculation in fuel cell vehicle due to its capability of high pressure rise in single stage. Numerical models were applied to investigate inner gap leakage flow characteristics. A leakage flow in the inner gap is dominantly affected by pressure gradient. Therefore a blower with concentric channel type was suggested as one of modified models for reducing the inner gap pressure gradient. Also numerical results such as pressure rise, efficiency, leakage flow rate and torque were compared between modified and reference models. The performance of concentric channel type was improved as a result of reduced leakage flow.

Flow analysis of the Hydrogen Recirculation System for Fuel Cells (연료전지 수소 재순환 시스템의 유동해석)

  • Kim, Jae-Choon;Lee, Yong-Taek;Chung, Jin-Taek;Kim, Yong-Chan;Hwang, In-Chul
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.759-764
    • /
    • 2005
  • In this paper, numerical analysis of hydrogen recycle system has been conducted in order to enhance the efficiency of automotive fuel cell. Generally, the excess hydrogen is provided in the automotive fuel cell. Since the non-reaction hydrogen reduces automotive fuel cell efficiency, reuse of the non-reaction hydrogen can be helpful to improve the fuel cell performance. In case of PEM FC, the water vapor is provided to hydrogen from the cathode so that the mixture experiences phase change depending on the changes of pressure and temperature. The internal flow of the mixture in the hydrogen recirculation system of fuel cell was investigated for real flow conditions. The variation of performance, properties and mass fractions of mixture, hydrogen and water-vapor were investigated. This study was performed based on 80KW level automotive fuel cell's recycling system.

  • PDF

Ammonia-fueled Solid Oxide Fuel Cell Recirculation Systems for Power Generation (암모니아 활용 고체산화물 연료전지 재순환 발전 시스템)

  • JIN YOUNG PARK;THAI-QUYEN QUACH;JINSUN KIM;YONGGYUN BAE;DONGKEUN LEE;YOUNGSANG KIM;SUNYOUP LEE;YOUNG KIM
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.1
    • /
    • pp.40-47
    • /
    • 2024
  • Ammonia is drawing attention as carbon free fuel due to its ease of storage and transportation compared to hydrogen. This study suggests ammonia fueled solid oxide fuel cell (SOFC) system with electrochemical hydrogen compressor (EHC)-based recirculation. Performance of electrochemical hydrogen pump is based on the experimental data under varying hydrogen and nitrogen concentration. As a result, the suggested system shows 62.04% net electrical efficiency. The efficiency is 10.33% point higher compared to simple standalone SOFC system (51.71%), but 0.02% point lower compared to blower-based recirculation system (62.06%). Further improvement in the EHC-based SOFC recirculation system can be achieved with EHC performance improvement.