• Title/Summary/Keyword: Receptors: AMPA

Search Result 39, Processing Time 0.022 seconds

Physiological and Pharmacological Characterization of Glutamate and GABA Receptors in the Retina

  • Yang, Xiong-Li;Shen, Ying;Han, Ming-Hu;Lu, Tao
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.5
    • /
    • pp.461-469
    • /
    • 1999
  • Glutamate and ${\gamma}-aminobutyric$ acid (GABA) are major excitatory and inhibitory neurotransmitters in the vertebrate retina, respectively. Using the whole-cell patch clamp technique and a rapid solution changer, glutamate and GABA receptors have been extensively investigated in carp retina. Glutamate receptors on both horizontal and amacrine cells may be an AMPA preferring subtype, which predominantly consists of flop splice variants. $GABA_A$ and $GABA_C$ receptors coexist in bipolar cells and they both show significant desensitization. Kinetics analysis demonstrated that activation, deactivation and desensitization of the $GABA_C$ receptor-mediated response of these cells are overall slower than those of the $GABA_A$ response. Endogenous modulator $Zn^{2+}$ in the retina was found to differentially modulate the kinetic characteristics of the $GABA_C$ and $GABA_A$ responses.

  • PDF

Low Non-NMDA Receptor Current Density as Possible Protection Mechanism from Neurotoxicity of Circulating Glutamate on Subfornical Organ Neurons in Rats

  • Chong, Wonee;Kim, Seong Nam;Han, Seong Kyu;Lee, So Yeong;Ryu, Pan Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.177-181
    • /
    • 2015
  • The subfornical organ (SFO) is one of circumventricular organs characterized by the lack of a normal blood brain barrier. The SFO neurons are exposed to circulating glutamate ($60{\sim}100{\mu}M$), which may cause excitotoxicity in the central nervous system. However, it remains unclear how SFO neurons are protected from excitotoxicity caused by circulating glutamate. In this study, we compared the glutamate-induced whole cell currents in SFO neurons to those in hippocampal CA1 neurons using the patch clamp technique in brain slice. Glutamate ($100{\mu}M$) induced an inward current in both SFO and hippocampal CA1 neurons. The density of glutamate-induced current in SFO neurons was significantly smaller than that in hippocampal CA1 neurons (0.55 vs. 2.07 pA/pF, p<0.05). To further identify the subtype of the glutamate receptors involved, the whole cell currents induced by selective agonists were then compared. The current densities induced by AMPA (0.45 pA/pF) and kainate (0.83 pA/pF), non-NMDA glutamate receptor agonists in SFO neurons were also smaller than those in hippocampal CA1 neurons (2.44 pA/pF for AMPA, p<0.05; 2.34 pA/pF for kainate, p< 0.05). However, the current density by NMDA in SFO neurons was not significantly different from that of hippocampal CA1 neurons (1.58 vs. 1.47 pA/pF, p>0.05). These results demonstrate that glutamate-mediated action through non-NMDA glutamate receptors in SFO neurons is smaller than that of hippocampal CA1 neurons, suggesting a possible protection mechanism from excitotoxicity by circulating glutamate in SFO neurons.

Layer-specific cholinergic modulation of synaptic transmission in layer 2/3 pyramidal neurons of rat visual cortex

  • Cho, Kwang-Hyun;Lee, Seul-Yi;Joo, Kayoung;Rhie, Duck-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.5
    • /
    • pp.317-328
    • /
    • 2019
  • It is known that top-down associative inputs terminate on distal apical dendrites in layer 1 while bottom-up sensory inputs terminate on perisomatic dendrites of layer 2/3 pyramidal neurons (L2/3 PyNs) in primary sensory cortex. Since studies on synaptic transmission in layer 1 are sparse, we investigated the basic properties and cholinergic modulation of synaptic transmission in layer 1 and compared them to those in perisomatic dendrites of L2/3 PyNs of rat primary visual cortex. Using extracellular stimulations of layer 1 and layer 4, we evoked excitatory postsynaptic current/potential in synapses in distal apical dendrites (L1-EPSC/L1-EPSP) and those in perisomatic dendrites (L4-EPSC/L4-EPSP), respectively. Kinetics of L1-EPSC was slower than that of L4-EPSC. L1-EPSC showed presynaptic depression while L4-EPSC was facilitating. In contrast, inhibitory postsynaptic currents showed similar paired-pulse ratio between layer 1 and layer 4 stimulations with depression only at 100 Hz. Cholinergic stimulation induced presynaptic depression by activating muscarinic receptors in excitatory and inhibitory synapses to similar extents in both inputs. However, nicotinic stimulation enhanced excitatory synaptic transmission by ~20% in L4-EPSC. Rectification index of AMPA receptors and AMPA/NMDA ratio were similar between synapses in distal apical and perisomatic dendrites. These results provide basic properties and cholinergic modulation of synaptic transmission between distal apical and perisomatic dendrites in L2/3 PyNs of the visual cortex, which might be important for controlling information processing balance depending on attentional state.

Effect of Oxidative Stress and Glutamate Receptor Antagonist on Cultured Rat Osteoblast and Osteoclast (백서의 배양 골아세포와 파골세포에 대한 산화적 손상과 Glutamate 수용체 길항제의 영향)

  • Park Seung Taeck;Jeon Seung Ho;Lee Byung Chan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.4
    • /
    • pp.996-1001
    • /
    • 2003
  • It is well known that oxidative stress of reactive oxygen species(ROS) may be a causative factor in the pathogenesis of bone disorder. The purpose of this study was to evaluate the cytotoxicity of oxidative stress. Cell viability by MTS assay or INT assay, activity of glutathione peroxidase(GPx), lipid peroxidation(LPO) activity and cell viablity. And also protctive effect of glutamate receptors against ROS-induced osteotoxicity was examined by protein synthesis, alkaline phosphatase (ALP) activity and lactate dehydrogenase (LDH) activity in cultured rat osteoblasts and osteoclasts. XO/HX decreased cell viability and GPx activity, protein synthesis and ALP activity, but increased LPO activity and LDH activity. In the protective effect, N-methyl-D-aspartate (NMDA) receptor antagonists or AMPA/kainate receptor antagonists such as D-2-amino-5-phosphonovaleric acid (APV), 7-chlorokynurenic acid (CKA), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 6,7-dinitroquinoxaline-2,3-dione (DNQX), NMDA receptor antagonists but AMPA/kainate receptor antagonists showed protective effect on xanthine oxidase (XO) and hypoxanthine (HX) in these cultures by the increse of protein synthesis, ALP activity.

Connecting the dots between SHP2 and glutamate receptors

  • Ryu, Hyun-Hee;Kim, Sun Yong;Lee, Yong-Seok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.2
    • /
    • pp.129-135
    • /
    • 2020
  • SHP2 is an unusual protein phosphatase that functions as an activator for several signaling pathways, including the RAS pathway, while most other phosphatases suppress their downstream signaling cascades. The physiological and pathophysiological roles of SHP2 have been extensively studied in the field of cancer research. Mutations in the PTPN11 gene which encodes SHP2 are also highly associated with developmental disorders, such as Noonan syndrome (NS), and cognitive deficits including learning disabilities are common among NS patients. However, the molecular and cellular mechanism by which SHP2 is involved in cognitive functions is not well understood. Recent studies using SHP2 mutant mice or pharmacological inhibitors have shown that SHP2 plays critical role in learning and memory and synaptic plasticity. Here, we review the recent studies demonstrating that SHP2 is involved in synaptic plasticity, and learning and memory, by the regulation of the expression and/or function of glutamate receptors. We suggest that each cell type may have distinct paths connecting the dots between SHP2 and glutamate receptors, and these paths may also change with aging.

Combinatorial modulation of the spontaneous firings by glutamate receptors in dopamine neurons of the rat substantia nigra pars compacta

  • Kim, Shin-Hye;Park, Yu-Mi;Sungkwon Chung;Uhm, Dae-Yong;Park, Myoung-Kyu
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.40-40
    • /
    • 2003
  • Spontaneous firing rate and patterns of dopaminergic neurons in midbrain are key factors in determining the level of dopamine at target loci as well as in the mechanisms such as reward and motor coordination. Although glutamate, as a major afferent, is reported to enhance firing rate, the detailed actions of NMDA-, AMPA/kainate-, and metabotropic glutamate receptors (mGluR) on filing patterns are not clear. Thus we have investigated the role of glutamate receptors on the spontaneous firing activities using the network-free, acutely isolated dopamine neurons from substantia nigra pars compacta(SNc) of the 9-14 days rat. The isolated cells showed spontaneous regular firings of near 2.5 Hz, whose rate was enhanced by glutamate at submicromolar levels (0.3 $\square$M) but abolished by high concentrations more than 10 $\square$M.

  • PDF

Neuroprotective Effects of Methanol Extract of Sophorae Subprostratae Radix on Glutamate Excitotoxicity in PC12 Cells and Organotypic Hippocampal Slice Cultures

  • Kim, Soo-Man;Shim, Eun-Sheb;Kim, Bum-Hoi;Sohn, Young-Joo;Kim, Sung-Hoon;Jung, Hyuk-Sang;Sohn, Nak-Won
    • The Journal of Korean Medicine
    • /
    • v.29 no.5
    • /
    • pp.29-40
    • /
    • 2008
  • Objectives : It has been reported that Sophorae Subprostratae Radix (SSR) has a neuroprotective effect on cerebral ischemia in animals. In the present study, the authors investigated the neuroprotective effect of SSR on glutamate excitotoxicity. Glutamate excitotoxicity was induced by using NMDA, AMPA, and KA in PC12 cells and in organotypic hippocampal slice cultures. Methods :Methanolic extract of SSR was added at 0.5, 5, and 50 ${\mu}$g/ml to culture media for 24 hours. The effects of SSR were evaluated by measuring of cell viability, PI-stained neuronal cell death, TUNEL-positive cells, and MAP-2 immunoreactivity. Results : SSR increased PC12 cell viabilities significantly against AMPA-induced excitotoxicity, but not against NMDA-induced or KA-induced excitotoxicity. In organotypic hippocampal slice cultures damaged by NMDA-induced excitotoxicity, SSR attenuated neuronal cell death significantly in the CA1, CA3, and DG hippocampal regions and reduced TUNEL-positive cells significantly in CA1 and DG regions. In organotypic hippocampal slice cultures damaged by AMPA-induced excitotoxicity, SSR attenuated neuronal cell death and reduced TUNEL-positive cell numbers significantly in the CA1 and DG regions. In organotypic hippocampal slice cultures damaged by KA-induced excitotoxicity, SSR attenuated neuronal cell death significantly in CA3, but did not reduce TUNEL-positive cell numbers in CA1, CA3 or DG. In organotypic hippocampal slice cultures damaged by NMDA-induced excitotoxicity, SSR attenuated pyramidal neuron neurite retraction and degeneration in CA1. Conclusions : These results suggest that the neuroprotective effects of SSR are related to antagonistic effects on the NMDA and AMPA receptors of neuronal cells damaged by excitotoxicity and ischemia.

  • PDF

The Role of Aquaporin-4 in Cerebral Edema Formation after Focal Cerebral Ischemia in Rats

  • Song, Young-Jin;Bae, Hae-Rahn;Ha, Se-Un;Huh, Jae-Taeck
    • Journal of Korean Neurosurgical Society
    • /
    • v.41 no.1
    • /
    • pp.30-38
    • /
    • 2007
  • Objective : To elucidate the role of aquaporin-4[AQP4] in cerebral edema formation, we studied the expression and subcellular localization of AQP4 in astrocytes after focal cerebral ischemia. Methods : Cerebral ischemia were induced by permanent middle cerebral artery[MCA] occlusion in rats and estimated by the discoloration after triphenyltetrazolium chloride[TTC] immersion. Change of AQP4 expression were evaluated using western blot. Localization of AQP4 was assessed by confocal microscopy and its interaction with ${\alpha}-syntrophin$ was analyzed by immunoprecipitation. Results : After right MCA occlusion, the size of infarct and number of apoptotic cells increased with time. The ratio of GluR1/GluR2 expression also increased during ischemia. The polarized localization of AQP4 in the endfeet of astrocytes contacting with ventricles, vessels and pia mater was changed into the diffuse distribution in cytoplasm. The interactions of AQP4 and Kir with ${\alpha}-syntrophin$, an adaptor of dystrophin complex, were disrupted by cerebral ischemia. Conclusion : The deranged spatial buffering function of astrocytes due to mislocalized AQP4/Kir4.1 channel as well as increased assembly of $Ca^{2+}$ permeable AMPA receptors might contribute to the development of edema formation and the excitotoxic neuronal cell death during ischemia.

Autism-Like Behavioral Phenotypes in Mice Treated with Systemic N-Methyl-D-Aspartate

  • Adil, Keremkleroo Jym;Gonzales, Edson Luck;Remonde, Chilly Gay;Boo, Kyung-Jun;Jeon, Se Jin;Shin, Chan Young
    • Biomolecules & Therapeutics
    • /
    • v.30 no.3
    • /
    • pp.232-237
    • /
    • 2022
  • Autism spectrum disorder (ASD) having core characteristics of social interaction problems and repetitive behaviors and interests affects individuals at varying degrees and comorbidities, making it difficult to determine the precise etiology underlying the symptoms. Given its heterogeneity, ASD is difficult to treat and the development of therapeutics is slow due to the scarcity of animal models that are easy to produce and screen with. Based on the theory of excitation/inhibition imbalance in the brain with ASD which involves glutamatergic and/or GABAergic neurotransmission, a pharmacologic agent to modulate these receptors might be a good starting point for modeling. N-methyl-D-aspartic acid (NMDA) is an amino acid derivative acting as a specific agonist at the NMDA receptor and therefore imitates the action of the neurotransmitter glutamate on that receptor. In contrast to glutamate, NMDA selectively binds to and regulates the NMDA receptor, but not other glutamate receptors such as AMPA and kainite receptors. Given this role, we aimed to determine whether NMDA administration could result in autistic-like behavior in adolescent mice. Both male and female mice were treated with saline or NMDA (50 and 75 mg/kg) and were tested on various behavior experiments. Interestingly, acute NMDA-treated mice showed social deficits and repetitive behavior similar to ASD phenotypes. These results support the excitation/inhibition imbalance theory of ASD and that NMDA injection can be used as a pharmacologic model of ASD-like behaviors.

Effect of Glutamate on the Vestibulo-Solitary Projection after Sodium Nitroprusside-Induced Hypotension in Conscious Rats

  • Li, Li-Wei;Ji, Guang-Shi;Yang, Yan-Zhao;Ameer, Abdul Nasir;Kim, Min Sun;Park, Byung Rim;Jin, Yuan-Zhe
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.3
    • /
    • pp.275-281
    • /
    • 2015
  • Orthostatic hypotension is most common in elderly people, and its prevalence increases with age. Attenuation of the vestibulo-sympathetic reflex (VSR) is commonly associated with orthostatic hypotension. In this study, we investigated the role of glutamate on the vestibulo-solitary projection of the VSR pathway to clarify the pathophysiology of orthostatic hypotension. Blood pressure and expression of both pERK and c-Fos protein were evaluated in the nucleus tractus solitarius (NTS) after microinjection of glutamate into the medial vestibular nucleus (MVN) in conscious rats with sodium nitroprusside (SNP)-induced hypotension that received baroreceptor unloading via sinoaortic denervation (SAD). SNP-induced hypotension increased the expression of both pERK and c-Fos protein in the NTS, which was abolished by pretreatment with glutamate receptor antagonists (MK801 or CNQX) in the MVN. Microinjection of glutamate receptor agonists (NMDA or AMPA) into the MVN increased the expression of both pERK and c-Fos protein in the NTS without causing changes in blood pressure. These results indicate that both NMDA and AMPA receptors play a significant role in the vestibulo-solitary projection of the VSR pathway for maintaining blood pressure, and that glutamatergic transmission in this projection might play a key role in the pathophysiology of orthostatic hypotension.