• Title/Summary/Keyword: Receptors, GABA

Search Result 89, Processing Time 0.02 seconds

Effects of ${\gamma}-Aminobutyric$ Acid on Intrinsic Cholinergic Action in Exocrine Secretion of Isolated, Perfused Rat Pancreas

  • Park, Yong-Deuk;Park, Hyung-Seo;Cui, Zheng-Yun;Park, Hyoung-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.3
    • /
    • pp.169-174
    • /
    • 2003
  • ${\gamma}$-Aminobutyric acid (GABA) has been reported to enhance exocrine secretion evoked not only by secretagogues but also by intrinsic neuronal excitation in the pancreas. The pancreas contains cholinergic neurons abundantly that exert a stimulatory role in exocrine secretion. This study was undertaken to examine effects of GABA on an action of cholinergic neurons in exocrine secretion of the pancreas. Intrinsic neurons were excited by electrical field stimulation (EFS; 15 V, 2 msec, 8 Hz, 45 min) in the isolated, perfused rat pancreas. Tetrodotoxin or atropine was used to block neuronal or cholinergic action. Acetylcholine was infused to mimic cholinergic excitation. GABA $(30{\mu}M)$ and muscimol $(10{\mu}M)$, given intra-arterially, did not change spontaneous secretion but enhanced cholecystokinin (CCK; 10 pM)-induced secretions of fluid and amylase. GABA (3, 10, $30{\mu}M$) further elevated EFS-evoked secretions of fluid and amylase dose-dependently. GABA (10, 30, $100{\mu}M$) also further increased acetylcholine $(5{\mu}M)$-induced secretions of fluid and amylase in a dose-dependent manner. Bicuculline $(10{\mu}M)$ effectively blocked the enhancing effects of GABA $(30{\mu}M)$ on the pancreatic secretions evoked by either EFS or CCK. Both atropine $(2{\mu}M)$ and tetrodotoxin $(1{\mu}M)$ markedly reduced the GABA $(10{\mu}M)$-enhanced EFS- or CCK-induced pancreatic secretions. The results indicate that GABA enhances intrinsic cholinergic neuronal action on exocrine secretion via the $GABA_A$ receptors in the rat pancreas.

The Effect of Treatment with Intrathecal Ginsenosides in a Rat Model of Postoperative Pain (백서를 이용한 수술 후 통증 유발 모형에서 척수강 내로 투여한 Ginsenosides의 효과)

  • Shin, Dong Jin;Yoon, Myung Ha;Lee, Hyung Gon;Kim, Woong Mo;Park, Byung Yun;Kim, Yeo Ok;Huang, Lan Ji;Cui, Jin Hua
    • The Korean Journal of Pain
    • /
    • v.20 no.2
    • /
    • pp.100-105
    • /
    • 2007
  • Background: Ginseng has been used to manage various types of pain in folk medicine. This study characterized the effect of treatment with intrathecal ginsenosides, the active components of ginseng in a postoperative pain model. Methods: Male Sprague-Dawley rats were implanted with lumbar intrathecal catheters. An incision was made in the plantar surface of the hindpaw. Withdrawal thresholds following the application of a von Frey filament to the wound site were measured. To determine the role of the opioid or GABA receptors following treatment with the ginsenosides, naloxone, bicuculline (a $GABA_A$ receptor antagonist), and saclofen (a $GABA_B$ receptor antagonist) were administered intrathecally 10 min before the delivery of the ginsenosides and the changes of the withdrawal thresholds after application of the von Frey filament were Observed. Results: Treatment with the intrathecal ginsenosides increased the withdrawal threshold in a dose dependent manner. Pre-treatment with intrathecal naloxone reversed the antinociceptive effect of the ginsenosides. However, pre-treatment with intrathecal bicuculline and saclofen failed to have an effect on the activity of the ginsenosides. Conclusions: These results suggest that ginsenosides are effective to alleviate the postoperative pain evoked by paw incision. The opioid receptor, but not GABA receptors, may be involved in the antinociceptive action of the ginsenosides at the spinal level.

4-Hydroxybenzaldehyde, One of Constituents from Gastrodiae Rhizoma Augments Pentobarbital-induced Sleeping Behaviors and Non-rapid Eye Movement (NREM) Sleep in Rodents

  • Choi, Jae Joon;Kim, Young-Shik;Kwon, Yeong Ok;Yoo, Jae Hyeon;Chong, Myong-Soo;Lee, Mi Kyeong;Hong, Jin Tae;Oh, Ki-Wan
    • Natural Product Sciences
    • /
    • v.21 no.3
    • /
    • pp.219-225
    • /
    • 2015
  • In the previous experiments, we reported that ethanol extract of Gastrodiae Rhizoma, the dried tuber of Gastrodia ElataBlume (Orchidaceae) increased pentobarbital-induced sleeping behaviors. These experiments were undertaken to know whether 4-hydroxybenzaldehyde (4-HBD), is one of the major compounds of Gastrodiae Rhizoma increases pentobarbital-induced sleeping behaviors and changes sleep architectures via activating GABAA-ergic systems in rodents. 4-HBD decreased locomotor activity in mice. 4-HBD increased total sleep time, and decreased of sleep onset by pentobarbital (28 mg/kg and 40 mg/kg). 4-HBD showed synergistic effects with muscimol (a GABAA receptor agonist), shortening sleep onset and enhancing sleep time on pentobarbital-induced sleeping behaviors. On the other hand, 4-HBD (200 mg/kg, p.o.) itself significantly inhibited the counts of sleepwake cycles, and prolonged total sleep time and non-rapid eye movement (NREM) in rats. Moreover, 4-HBD increased intracellular Cl levels in the primary cultured cerebellar cells. The protein levels of glutamic acid decarboxylase (GAD) and GABAA receptors subunits were over-expressed by 4-HBD. Consequently, these results demonstrate that 4-HBD increased NREM sleep as well as sleeping behaviors via the activation of GABAA-ergic systems in rodents.

Tranquilizer-like Effects of Sanjoinine A: Possible GABA/Benzodiazepine Receptors Complex Involvement

  • Ma, Yu-An;Eun, Jae-Soon;Oh, Ki-Wan
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2008.04a
    • /
    • pp.119-142
    • /
    • 2008
  • Zizyphi Spinosi Semen (ZSS) has been widely used for the treatment of anxiety and insomnia in Korea and China. This experiment was performed to know whether sanjoinine A, one of major alkaloid compounds of ZSS has anxiolytic and hypnotic effects through the GABAergic systems. Our results showed that administration of sanjoinine A increased open arm entries and spent time in open arm in the elevated plus-maze and increased head dips in hole board test. Different from traditional anxiolytic, diazepam, sanjoinine A itself did not decrease locomotor activity and strength level in mice. Furthermore, Sanjoinine A (0.5-2.0 mg/kg) prolonged sleeping time and reduced sleeping latency induced by pentobarbital in a dose-dependent manner similar to muscimol, a $GABA_A$ receptor agonist. Sanjoinine A (0.25-1.0 mg/kg) also increased sleeping rate and sleeping time in the combined administration at the sub-hypnotic dose of pentobarbital and showed synergic effects with muscimol in potentiating sleeping onset and enhancing sleeping time induced by pentobarbital. However, sanjoinine A itself did not induce sleeping at the higher dose. In addition, both of sanjoinine A and pentobarbital increased chloride influx in primary cultured cerebellar granule cells. Sanjoinine A decreased the $GABA_A$ receptor ${\alpha}$-subunit expression and increased ${\gamma}$-subunit expression, and had no effects on abundance of ${\beta}$-subunit in primary cultured cerebellar granule cells, showing different expression of subunits from pentobarbital. In conclusion, sanjoinine A shows anxiolytic-like effects and augments pentabarbital-induced sleeping behaviors through the modification of GABAergic systems. [This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (The Regional Research Universities Program/Center for Healthcare Technology Development)].

  • PDF

Anxiolytic-Like Effects of Chrysanthemum indicum Aqueous Extract in Mice: Possible Involvement of GABAA Receptors and 5-HT1A Receptors

  • Hong, Sa-Ik;Kwon, Seung-Hwan;Kim, Min-Jung;Ma, Shi-Xun;Kwon, Je-Won;Choi, Seung-Min;Choi, Soo-Im;Kim, Sun-Yeou;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • v.20 no.4
    • /
    • pp.413-417
    • /
    • 2012
  • Chrysanthemum indicum Linne is an ancient herbal medicine used to treat bone and muscle deterioration, ocular inflammation, headache, and anxiety in Korea, China, and Japan. Furthermore, tea derived from Chrysanthemum indicum Linne has been used to treat anxiety by facilitating relaxation and curing insomnia. However, no reports exist on the anxiolytic-like effects of Chrysanthemum indicum Linne water extract (CWE) in mice. In the present study, we investigated the anxiolytic-like effects of CWE using the elevated plus-maze (EPM) test in mice. CWE, at a dose of 500 mg/kg (p.o.), significantly increased the time spent in the open arms of the EPM compared to a vehicle-injected control group. Moreover, the effect of CWE (500 mg/kg) was blocked by bicuculline (a selective $GABA_A$ receptor antagonist) and WAY 100635 (a selective 5-$HT_{1A}$ receptor antagonist). Taken together, these findings suggest that the anxiolytic-like effects of CWE might be mediated by the $GABA_A$ receptor and the 5-$HT_{1A}$ receptor.

Rosmarinic Acid Potentiates Pentobarbital-Induced Sleep Behaviors and Non-Rapid Eye Movement (NREM) Sleep through the Activation of GABAA-ergic Systems

  • Kwon, Yeong Ok;Hong, Jin Tae;Oh, Ki-Wan
    • Biomolecules & Therapeutics
    • /
    • v.25 no.2
    • /
    • pp.105-111
    • /
    • 2017
  • It has been known that RA, one of major constituents of Perilla frutescens which has been used as a traditional folk remedy for sedation in oriental countries, shows the anxiolytic-like and sedative effects. This study was performed to know whether RA may enhance pentobarbital-induced sleep through ${\gamma}-aminobutyric$ acid $(GABA)_A-ergic$ systems in rodents. RA (0.5, 1.0 and 2.0 mg/kg, p.o.) reduced the locomotor activity in mice. RA decreased sleep latency and increased the total sleep time in pentobarbital (42 mg/kg, i.p.)-induced sleeping mice. RA also increased sleeping time and number of falling sleep mice after treatment with sub-hypnotic pentobarbital (28 mg/kg, i.p.). In electroencephalogram (EEG) recording, RA (2.0 mg/kg) not only decreased the counts of sleep/wake cycles and REM sleep, but also increased the total and NREM sleep in rats. The power density of NREM sleep showed the increase in ${\delta}-waves$ and the decrease in ${\alpha}-waves$. On the other hand, RA (0.1, 1.0 and $10{\mu}g/ml$) increased intracellular $Cl^-$ influx in the primary cultured hypothalamic cells of rats. RA (p.o.) increased the protein expression of glutamic acid decarboxylase ($GAD_{65/67}$) and $GABA_A$ receptors subunits except ${\beta}1$ subunit. In conclusion, RA augmented pentobarbital-induced sleeping behaviors through $GABA_A-ergic$ transmission. Thus, it is suggested that RA may be useful for the treatment of insomnia.

Effect of Lidocaine on the Release, Receptor Binding and Uptake of Amino Acid Neurotransmitters In vitro (Lidocaine이 아미노산 신경전도물질의 유리, 수용체 결합, 및 섭취에 미치는 효과에 관한 시험관내 실험에 관한 연구)

  • Oh, An-Min;Cheong, Dong-Kyun;Mori, Masakazu
    • The Korean Journal of Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.17-29
    • /
    • 1988
  • The author examined the effects of lidocaine on the veratrine-or potassium-induced release of neurotransmitters to determine the possible role of amino acid neurotransmitters in lidocaine-induced convulsion. The examined transmitters were gamma-aminobutyric acid (GABA), aspartic acid, glutamic acid and norepinephrine which are released from the synaptosomes. Furthermore, the effects of lidocaine on the binding to receptors and synaptosomal uptake of the two transmitters, GABA and glutamic acid, were determined in crude synaptic membranes and synaptosomes. In addition, the effects of propranolol, norepinephrine and serotonin on the release of amino acid neurotransmitters were also examined. The veratrine-induced release of GABA was most severely inhibited by lidocaine and propranolol, while norepinephrine and serotonin reduced the release of aspartic acid and glutamic acid more than the GABA release. Generally the potassium-induced release was much more resistant to the lidocaine action than the veratrine-induced release. Among the neurotransmitters examined, the aspartic acid release was most prone to the lidocaine action, while the GABA release was most resistant. Concentrations of lidocaine below 1 mM did not significantly change the GABA and glutamic acid receptor binding and uptake. These results indicate that the blocking of sodium channels by lidocaine can result in the selective depression of the GABA release. This may result in unlimited excitation of the central nervous system.

  • PDF

Effect of propofol on salivary secretion from the submandibular, sublingual, and labial glands during intravenous sedation

  • Keisuke Masuda;Akira Furuyama;Kenji Ohsuga;Shota Abe;Hiroyoshi Kawaai
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.23 no.3
    • /
    • pp.153-162
    • /
    • 2023
  • Background: Recent animal studies have suggested the role of GABA type A (GABA-A) receptors in salivation, showing that GABA-A receptor agonists inhibit salivary secretion. This study aimed to evaluate the effects of propofol (a GABA-A agonist) on salivary secretions from the submandibular, sublingual, and labial glands during intravenous sedation in healthy volunteers. Methods: Twenty healthy male volunteers participated in the study. They received a loading dose of propofol 6 mg/kg/h for 10 min, followed by 3 mg/kg/h for 15 min. Salivary flow rates in the submandibular, sublingual, and labial glands were measured before, during, and after propofol infusion, and amylase activity was measured in the saliva from the submandibular and sublingual glands. Results: We found that the salivary flow rates in the submandibular, sublingual, and labial glands significantly decreased during intravenous sedation with propofol (P < 0.01). Similarly, amylase activity in the saliva from the submandibular and sublingual glands was significantly decreased (P < 0.01). Conclusion: It can be concluded that intravenous sedation with propofol decreases salivary secretion in the submandibular, sublingual, and labial glands via the GABA-A receptor. These results may be useful for dental treatment when desalivation is necessary.

EFFECT OF METHANOL EXTRACT OF CNIDII RHIZOMA ON THE FUNCTION OF RECEPTORS FOR GABA AND GLYCINE (천궁(Cnidii Rhizoma)의 메탄올 추출물이 GABA 및 Glycine 수용체에 미치는 영향)

  • Lee, Jong-Tae;Lee, Keung-Ho;Park, Jae-Hong
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.1
    • /
    • pp.55-66
    • /
    • 2005
  • Cnidii Rhizoma (CR) was subjected to extraction with 70% methanol and tested to determine whether it has anxiolytic activity in mouse by employing staircase and rotarod tests. In addition, to understand the mechanism of anxiolytic action, CR, picrotoxin, yohimbine, isoniazid and strychnine were utilized to deliniate the potential involvement of GABA and glycine receptors in the action of Cnidii Rhizoma. To gain insights into the safety of Cnidii Rhizoma extract, behavioral and MTT tests were carried out. The results were obtained as follows: 1. CR extract had little effect on climbing numbers in the stair case test. 2. CR extract had considerable anti-anxiety effects as evidenced by the reduction of rearing numbers in the stair case test. 3. CR extract had little effect on muscle relaxation. 4. Anxiolytic actions of CR extract appeared to be mediated by glycine receptor activation. 5. Cytotoxicity in the neuronal cell was not observed and no strange behaviors were found. In short, these results indicate that CR extract has the ability to exert anxiolytic activity, possibly by activating glycine receptor with little side effects in mouse.

  • PDF

Flavonoid in Clover Honey Exerts a Hypnotic Effect via Positive Allosteric Modulation of the GABAA-BZD Receptor in Mice

  • Han, Kyoung-Sik;Yang, Hyejin;Yoon, Minseok
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.6
    • /
    • pp.1364-1369
    • /
    • 2017
  • There is a growing demand for natural sleep aids due to various side effects of long-term administration of pharmacological treatments for insomnia. Honey has been reported to exhibit numerous potential health benefits, and it is hypothesized that honey may favorably affect insomnia treatment. Therefore, this study was performed to investigate the possible hypnotic effect of clover honey (CH) and to determine its in vivo mechanism. The total flavonoid content (TFC) of CH and fractions extracted with ethylacetate (EtOAc) and $H_2O$ was measured. The pentobarbital-induced sleep test using $GABA_A$-benzodiazepine (BZD) agonists and antagonists was conducted to evaluate the potential mechanism of action behind the sedative-hypnotic activity of CH in mice. The results showed that administration of 500 and 1,000 mg/kg of CH significantly (p<0.01) reduced the sleep latency to a level similar to that of diazepam (DZP, 2 mg/kg), and 1,000 mg/kg of CH significantly (p<0.01) prolonged the sleep duration, which was comparable to that of DZP (2 mg/kg). Administration of the EtOAc fraction with a higher TFC significantly reduced the sleep latency at 50 to 200 mg/kg and prolonged the sleep duration at 100 to 200 mg/kg, which were comparable to those after administration of DZP (2 mg/kg). However, co-administration of CH and EtOAc with flumazenil, a specific $GABA_A-BZD$ receptor antagonist, blocked the hypnotic effect. Our findings suggest that the hypnotic activity of CH may be attributed to allosteric modulation of $GABA_A-BZD$ receptors. The TFC of CH is expected to be a key factor that contributes to its hypnotic effect.