• Title/Summary/Keyword: Receptor-mediated

Search Result 1,295, Processing Time 0.031 seconds

TR4 Inhibits LXR-mediated Decrease of Lipid Accumulation in 3T3-L1 Adipocytes

  • Choi, Ho-Jung;Kim, Eung-Seok
    • Food Science of Animal Resources
    • /
    • v.31 no.3
    • /
    • pp.398-404
    • /
    • 2011
  • TR4 has been suggested to play an important role in lipid metabolism in adipocytes. Although TR4 facilitates lipid accumulation during adipogenesis, the regulatory effect of TR4 on lipid storage in mature adipocytes remains unclear. We showed that TR4 inhibited the LXR agonist GW3965-mediated decrease of lipid accumulation in 3T3-L1 adipocytes. A reporter gene analysis revealed that TR4 suppressed LXR${\alpha}$ transcriptional activity, although LXR${\alpha}$ was unable to affect TR4 transcriptional activity. Moreover, adding TR4 resulted in reduced LXR${\alpha}$ binding to the LXR responsive element in a gel shift assay. Additionally, the suppressive effect of GW3965 on perilipin expression and lipid accumulation in 3T3-L1 adipocytes was abolished by TR4 overexpression. Taken together, our data demonstrate that TR4 plays an inhibitory role in LXR${\alpha}$-mediated suppression of lipid accumulation in 3T3-L1 adipocytes. This TR4 protective effect is mediated, in part, y blocking the suppressive effect of GW3965 on perilipin gene expression.

Neuropeptide Signaling Regulates Pheromone-Mediated Gene Expression of a Chemoreceptor Gene in C. elegans

  • Park, Jisoo;Choi, Woochan;Dar, Abdul Rouf;Butcher, Rebecca A.;Kim, Kyuhyung
    • Molecules and Cells
    • /
    • v.42 no.1
    • /
    • pp.28-35
    • /
    • 2019
  • Animals need to be able to alter their developmental and behavioral programs in response to changing environmental conditions. This developmental and behavioral plasticity is mainly mediated by changes in gene expression. The knowledge of the mechanisms by which environmental signals are transduced and integrated to modulate changes in sensory gene expression is limited. Exposure to ascaroside pheromone has been reported to alter the expression of a subset of putative G protein-coupled chemosensory receptor genes in the ASI chemosensory neurons of C. elegans (Kim et al., 2009; Nolan et al., 2002; Peckol et al., 1999). Here we show that ascaroside pheromone reversibly represses expression of the str-3 chemoreceptor gene in the ASI neurons. Repression of str-3 expression can be initiated only at the L1 stage, but expression is restored upon removal of ascarosides at any developmental stage. Pheromone receptors including SRBC-64/66 and SRG-36/37 are required for str-3 repression. Moreover, pheromone-mediated str-3 repression is mediated by FLP-18 neuropeptide signaling via the NPR-1 neuropeptide receptor. These results suggest that environmental signals regulate chemosensory gene expression together with internal neuropeptide signals which, in turn, modulate behavior.

Signaling Pathway of Lysophosphatidic Acid-Induced Contraction in Feline Esophageal Smooth Muscle Cells

  • Nam, Yun Sung;Suh, Jung Sook;Song, Hyun Ju;Sohn, Uy Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.139-147
    • /
    • 2013
  • Lysolipids such as LPA, S1P and SPC have diverse biological activities including cell proliferation, differentiation, and migration. We investigated signaling pathways of LPA-induced contraction in feline esophageal smooth muscle cells. We used freshly isolated smooth muscle cells and permeabilized cells from cat esophagus to measure the length of cells. Maximal contraction occurred at $10^{-6}M$ and the response peaked at 30s. To identify LPA receptor subtypes in cells, western blot analysis was performed with antibodies to LPA receptor subtypes. LPA1 and LPA3 receptor were detected at 50 kDa and 44 kDa. LPA-induced contraction was almost completely blocked by LPA receptor (1/3) antagonist KI16425. Pertussis toxin (PTX) inhibited the contraction induced by LPA, suggesting that the contraction is mediated by a PTX-sensitive G protein. Phospholipase C (PLC) inhibitors U73122 and neomycin, and protein kinase C (PKC) inhibitor GF109203X also reduced the contraction. The PKC-mediated contraction may be isozyme-specific since only $PKC{\varepsilon}$ antibody inhibited the contraction. MEK inhibitor PD98059 and JNK inhibitor SP600125 blocked the contraction. However, there is no synergistic effect of PKC and MAPK on the LPA-induced contraction. In addition, RhoA inhibitor C3 exoenzyme and ROCK inhibitor Y27632 significantly, but not completely, reduced the contraction. The present study demonstrated that LPA-induced contraction seems to be mediated by LPA receptors (1/3), coupled to PTX-sensitive G protein, resulting in activation of PLC, PKC-${\varepsilon}$ pathway, which subsequently mediates activation of ERK and JNK. The data also suggest that RhoA/ROCK are involved in the LPA-induced contraction.

NMDA Receptor Antagonists Enhance 5-HT Receptor-mediated Behavior, Head-Twitch Response, in Mice

  • Kim, Hack-Seang;Park, In-Sook;Chung, Myeon-Woo;Son, Young-Rey;Park, Woo-Kyu
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.102-102
    • /
    • 1997
  • The purpose of this study was to determine the behavioral interaction between glutamatergic and serotonergic receptors. In the present study, both the competitive (AP-5 and D-CPP) and the noncompetitive (MK-801, ketamine, dextrorphan and dextromethorphan) N-methyl-D-aspartate (NMDA) receptor antagonists markedly enhanced 5-HT(5-hydroxytryptamine)-induced selective serotonergic behavior, head-twitch response (HTR), in mice. These results suggest that the glutamatergic neurotransmission may modulate serotonergic function at the 5-HT receptor. The precise relationship between glutamatergic and serotonergic system is as yet undefined. However, these are the first data available regarding glutamatergic modulation of serotonergic function at the 5-HT receptor in intact mice, and the present results support the notion that the NMDA receptors may play important roles in the glutamatergic modulation of serotonergic function at the 5-HT receptor.

  • PDF

Modulation of Life and Death by the Tumor Necrosis Factor Receptor-Associated Factors (TRAFs)

  • Lee, Na-Kyung;Lee, Soo-Young
    • BMB Reports
    • /
    • v.35 no.1
    • /
    • pp.61-66
    • /
    • 2002
  • The TNF receptor-associated factor (TRAF) family is a group of adapter proteins that link a wide variety of cell surface receptors. Including the TNF and IL-1 receptor superfamily to diverse signaling cascades, which lead to the activation of NF-${\kappa}B$ and mitogen-activated protein kinases. In addition, TRAFs interact with a variety of proteins that regulate receptor-induced cell death or survival. Thus, TRAF-mediated signals may directly induce cell survival or interfere with the death receptor-induced apoptosis.

Identification of Ran-binding protein M as a stanniocalcin 2 interacting protein and implications for androgen receptor activity

  • Shin, Jihye;Sohn, Young Chang
    • BMB Reports
    • /
    • v.47 no.11
    • /
    • pp.643-648
    • /
    • 2014
  • Stanniocalcin (STC), a glycoprotein hormone originally discovered in fish, has been implicated in calcium and phosphate homeostasis. While fishes and mammals possess two STC homologs (STC1 and STC2), the physiological roles of STC2 are largely unknown compared with those of STC1. In this study, we identified Ran-binding protein M (RanBPM) as a novel binding partner of STC2 using yeast two-hybrid screening. The interaction between STC2 and RanBPM was confirmed in mammalian cells by immunoprecipitation. STC2 enhanced the RanBPM-mediated transactivation of liganded androgen receptor (AR), but not thyroid receptor ${\beta}$, glucocorticoid receptor, or estrogen receptor ${\beta}$. We also found that AR interacted with RanBPM in both the absence and presence of testosterone (T). Furthermore, we discovered that STC2 recruits RanBPM/AR complex in T-dependent manner. Taken together, our findings suggest that STC2 is a novel RanBPM-interacting protein that promotes AR transactivation.

Regulation of CYP 1A1 gene expression by retinoic acid receptor, retinoid X receptor and constitutive androstane receptor in rainbow trout hepatoma cells(RTH 149)

  • Kim, Ji-Sun;Yang, So-Yeun;Seo, Mi-Jung;Sheen, Yhun-Yhong
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.119.2-119.2
    • /
    • 2003
  • Exposure of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes a variety of biological and toxicology effects, most of which are mediated by aryl hydrocarbon receptor (AhR). The ligand-bound AhR as a heterodimer with AhR nuclear translocator (ARNT) binds to its specific DNA recognition site, the dioxin-responsive element (DRE), and it results in increased transcription of CYP1A1 gene. Retinoic acid (RA) regulates the transcription of various genes for several essential functions through binding to two classes of nuclear receptors, the retinoic acid receptor (RAR) and retinoid X receptor (RXR). (omitted)

  • PDF

Reactive oxygen species-specific characteristics of transient receptor potential ankyrin 1 receptor and its pain modulation

  • Hyun-Ji Yoon;Sung-Cherl Jung
    • Journal of Medicine and Life Science
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Transient receptor potential ankyrin 1 (TRPA1) receptors are major polymodal nociceptors that generate primary pain responses in the peripheral nerve endings of the dorsal root ganglion neurons. Recently, we reported that the activation of TRPA1 receptors by reactive oxygen species (ROS) signaling, which is triggered by Ca2+ influx through T-type Ca2+ channels, contributes to prolonged pain responses induced by jellyfish toxin. In this review, we focus on the characteristics of the TRPA1 receptor involved in intracellular signaling as a secondary pain modulator. Unlike other transient receptor potential receptors, TRPA1 receptors can induce membrane depolarization by ROS without exogenous stimuli in peripheral and central sensory neurons. Therefore, it is important to identify the functional characteristics of TRPA1 receptors to understand pain modulation under several pathogenic conditions such as neuropathic pain syndromes and autoimmune diseases, which are mediated by oxidative signaling to cause chronic pain in the sensory system.