• Title/Summary/Keyword: Receptor proteins

Search Result 756, Processing Time 0.031 seconds

Proteomic analysis of androgen-independent growth in low and high passage human LNCaP prostatic adenocarcinoma cells

  • Youm, Yun-Hee;Kim, Se-Yoon;Bahk, Young-Yil;Yoo, Tag-Keun
    • BMB Reports
    • /
    • v.41 no.10
    • /
    • pp.722-727
    • /
    • 2008
  • The present study compared the proteomic characteristics of a low passage number (L-33) and high passage number (H-81) LNCaP cell clone. Marked differences in protein expression were noted in the response of L-33 and H-81 cells to androgens. To investigate if regulation of these proteins was androgen-dependent, expression of the androgen receptor was silenced via small interfering RNA. Consistent with the proteomic data, abrogation of androgen receptor production in H-81 cells resulted in the reversed expression level into L-33 cells compared with non-treated H-81 LNCaP cells. The results clarify the progression into an androgen-independent phenotype.

Comparative Analyses of Tomato yellow leaf curl virus C4 Protein-Interacting Host Proteins in Healthy and Infected Tomato Tissues

  • Kim, Namgyu;Kim, Jinnyun;Bang, Bongjun;Kim, Inyoung;Lee, Hyun-Hee;Park, Jungwook;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.32 no.5
    • /
    • pp.377-387
    • /
    • 2016
  • Tomato yellow leaf curl virus (TYLCV), a member of the genus Begomovirus, is one of the most important viruses of cultivated tomatoes worldwide, mainly causing yellowing and curling of leaves with stunting in plants. TYLCV causes severe problems in sub-tropical and tropical countries, as well as in Korea. However, the mechanism of TYLCV infection remains unclear, although the function of each viral component has been identified. TYLCV C4 codes for a small protein involved in various cellular functions, including symptom determination, gene silencing, viral movement, and induction of the plant defense response. In this study, through yeast-two hybrid screenings, we identified TYLCV C4-interacting host proteins from both healthy and symptom-exhibiting tomato tissues, to determine the role of TYLCV C4 proteins in the infection processes. Comparative analyses of 28 proteins from healthy tissues and 36 from infected tissues showing interactions with TYLCV C4 indicated that TYLCV C4 mainly interacts with host proteins involved in translation, ubiquitination, and plant defense, and most interacting proteins differed between the two tissues but belong to similar molecular functional categories. Four proteins-two ribosomal proteins, S-adenosyl-L-homocysteine hydrolase, and 14-3-3 family protein-were detected in both tissues. Furthermore, the identified proteins in symptom-exhibiting tissues showed greater involvement in plant defenses. Some are key regulators, such as receptor-like kinases and pathogenesis-related proteins, of plant defenses. Thus, TYLCV C4 may contribute to the suppression of host defense during TYLCV infection and be involved in ubiquitination for viral infection.

Advanced Glycation End Products and Diabetic Complications

  • Singh, Varun Parkash;Bali, Anjana;Singh, Nirmal;Jaggi, Amteshwar Singh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • During long standing hyperglycaemic state in diabetes mellitus, glucose forms covalent adducts with the plasma proteins through a non-enzymatic process known as glycation. Protein glycation and formation of advanced glycation end products (AGEs) play an important role in the pathogenesis of diabetic complications like retinopathy, nephropathy, neuropathy, cardiomyopathy along with some other diseases such as rheumatoid arthritis, osteoporosis and aging. Glycation of proteins interferes with their normal functions by disrupting molecular conformation, altering enzymatic activity, and interfering with receptor functioning. AGEs form intra- and extracellular cross linking not only with proteins, but with some other endogenous key molecules including lipids and nucleic acids to contribute in the development of diabetic complications. Recent studies suggest that AGEs interact with plasma membrane localized receptors for AGEs (RAGE) to alter intracellular signaling, gene expression, release of pro-inflammatory molecules and free radicals. The present review discusses the glycation of plasma proteins such as albumin, fibrinogen, globulins and collagen to form different types of AGEs. Furthermore, the role of AGEs in the pathogenesis of diabetic complications including retinopathy, cataract, neuropathy, nephropathy and cardiomyopathy is also discussed.

Deficiencies of Homer2 and Homer3 accelerate aging-dependent bone loss in mice

  • Kang, Jung Yun;Kang, Namju;Shin, Dong Min;Yang, Yu-Mi
    • International Journal of Oral Biology
    • /
    • v.45 no.3
    • /
    • pp.126-133
    • /
    • 2020
  • Homer proteins are scaffold proteins that regulate calcium (Ca2+) signaling by modulating the activity of multiple Ca2+ signaling proteins. In our previous report, Homer2 and Homer3 regulated NFATc1 function through its interaction with calcineurin, which then acted to regulate receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis and bone metabolism. However, to date, the role of Homers in osteoclastogenesis remains unknown. In this study, we investigated the roles of Homer2 and Homer3 in aging-dependent bone remodeling. Deletion of Homer2/Homer3 (Homer2/3 DKO) markedly decreased the bone density of the femur. The decrease in bone density was not seen in mice with Homer2 (Homer2-/-) and Homer3 (Homer3-/-) deletion. Moreover, RANKL treatment of bone marrow-derived monocytes/macrophages in Homer2/3 DKO mice significantly increased the formation of multinucleated cells and resorption areas. Finally, Homer2/3 DKO mice decreased bone density in an aging-dependent manner. These findings suggest a novel potent mode of bone homeostasis regulation through osteoclasts differentiation during aging by Homer proteins, specifically Homer2 and Homer3.

Post-transcriptional and post-translational regulation during mouse oocyte maturation

  • Kang, Min-Kook;Han, Seung-Jin
    • BMB Reports
    • /
    • v.44 no.3
    • /
    • pp.147-157
    • /
    • 2011
  • The meiotic process from the primordial stage to zygote in female germ cells is mainly adjusted by post-transcriptional regulation of pre-existing maternal mRNA and post-translational modification of proteins. Several key proteins such as the cell cycle regulator, Cdk1/cyclin B, are post-translationally modified for precise control of meiotic progression. The second messenger (cAMP), kinases (PKA, Akt, MAPK, Aurora A, CaMK II, etc), phosphatases (Cdc25, Cdc14), and other proteins (G-protein coupled receptor, phosphodiesterase) are directly or indirectly involved in this process. Many proteins, such as CPEB, maskin, eIF4E, eIF4G, 4E-BP, and 4E-T, post-transcriptionally regulate mRNA via binding to the cap structure at the 5' end of mRNA or its 3' untranslated region (UTR) to generate a closed-loop structure. The 3' UTR of the transcript is also implicated in post-transcriptional regulation through an association with proteins such as CPEB, CPSF, GLD-2, PARN, and Dazl to modulate poly(A) tail length. RNA interfering is a new regulatory mechanism of the amount of mRNA in the mouse oocyte. This review summarizes information about post-transcriptional and post-translational regulation during mouse oocyte meiotic maturation.

Responses of Arabidopsis thaliana to Challenge by Pseudomonas syringae

  • Kim, Min Gab;Kim, Sun Young;Kim, Woe Yeon;Mackey, David;Lee, Sang Yeol
    • Molecules and Cells
    • /
    • v.25 no.3
    • /
    • pp.323-331
    • /
    • 2008
  • Plants are continually exposed to a variety of potentially pathogenic microbes, and the interactions between plants and pathogenic invaders determine the outcome, disease or disease resistance. To defend themselves, plants have developed a sophisticated immune system. Unlike animals, however, they do not have specialized immune cells and, thus all plant cells appear to have the innate ability to recognize pathogens and turn on an appropriate defense response. Using genetic, genomic and biochemical methods, tremendous advances have been made in understanding how plants recognize pathogens and mount effective defenses. The primary immune response is induced by microbe-associated molecular patterns (MAMPs). MAMP receptors recognize the presence of probable pathogens and evoke defense. In the co-evolution of plant-microbe interactions, pathogens gained the ability to make and deliver effector proteins to suppress MAMP-induced defense responses. In response to effector proteins, plants acquired R-proteins to directly or indirectly monitor the presence of effector proteins and activate an effective defense response. In this review we will describe and discuss the plant immune responses induced by two types of elicitors, PAMPs and effector proteins.

Co-expression and Sequence Determination of Estrogen Receptor Variant Messenger RNAs in Swine Uterus

  • Ying, C.;Chan, M.-A.;Cheng, W.T.K.;Hong, W.-F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.12
    • /
    • pp.1716-1721
    • /
    • 2003
  • Steroid hormones and their receptors play an important role in reproductive process. Estrogen is intimately involved with pregnancy and its function is mediated through the estrogen receptor which has been chosen as a candidate gene to study litter size in pigs. In this study, we report that two estrogen receptor variants, designated pER-1 and pER-2 were co-expressed in the uteri of normal cycling Lan-Yu pig (Sus vittatus; a small-ear miniature in Taiwan) with the pER-1 expression level appeared to be several times higher than that of pER-2. These receptor variants were isolated using reverse transcription-PCR from the pig uteri and their sequences were determined. The pER-1 and pER-2 sequences, which are homologous to those found in other mammalian estrogen receptors, encode putative proteins consisting of 574 and 486 amino acids, respectively. A deletion in exon I was identified in both sequences, with deletion lengths of 63 bp in pER-1 and 327 bp in pER-2. The deletion in pER-1 is internal to that in pER-2 and both deletions resulted in a truncation of the B domain, which confers the transactivating activity of estrogen receptor protein. This result describes the existence of estrogen receptor variants with a deletion in exon I and implies the possibility that physiological functioning of an estrogen receptor may not require the presence of an intact B domain.

Identification of novel $Ca^{2+}$ binding proteins in junctional sarcoplasmic reticulum of rabbit skeletal muscle

  • Jung, Dai-Hyun;Mo, Sang-Hyun;Kim, Do-Han
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2002.06b
    • /
    • pp.56-56
    • /
    • 2002
  • Muscle contraction and relaxation are regulated by the sarcoplasmic reticulum (SR)-mediated $Ca^{2+}$ release and $Ca^{2+}$ uptake. The SR functions are closely related with the proteins residing in the SR such as ryanodine receptor, $Ca^{2+}$-ATpase, calsequestrin, triadin and junctin. In an effort to further identify important functional SR proteins, experiments of sucrose-density gradient of SR fractionation, concanavalin A treatment, 2D gel electrophoresis, $^{45}$ Ca$^{2+}$ overlay, Strains-all staining, and peptide finger printing (PFP) were carried out.(omitted)d)

  • PDF