• 제목/요약/키워드: Receptor complex

검색결과 380건 처리시간 0.032초

Flavone 유도체들의 Tyrosinase 저해활성화 반응에서 Hydroxyl 치환기들의 역할 (The Roles of Hydroxyl Substituents in Tyrosinase Inhibitory Activation of Flavone Analogues)

  • 박준호;성낙도
    • Journal of Applied Biological Chemistry
    • /
    • 제54권1호
    • /
    • pp.56-62
    • /
    • 2011
  • Tyrosinase 저해활성화 반응에 대한 polyhydroxy 치환된 flavone 유도체(1-25) 중, hydroxyl-치환기($R_1-R_9$)들의 역할을 이해하기 위하여 Free-Wilson 분석과 tyrosinase (PDB ID: Deoxyform (2ZMX) 및 Oxy-form; 1WX2)의 활성화 지점에 대한 분자도킹이 연구되었다. Free-Wilson 분석으로부터 $R_1-R_9$ 치환기중에서 $R_1$=hydroxyl 치환기가 tyrosinase 저해활성에 가장 큰 영향을 미치고 있음을 알았다. 기질분자의 hydroxyl 치환기들과 tyrosinase의 반응점 내 아미노산 잔기들 사이의 수소결합들은 안정한 기질-수용체 착 화합물을 형성하는데 기여하였다. 특히, 수소결합성에 기초한 비경쟁적 저해활성화 반응은 기질분자의 hydroxyl 치환기들과 tyrosinase의 반응점 내 peroxide 산소원자(Per404) 사이의 수소결합을 경유하여 일어날 것임을 제안하였다.

DEVELOPMENT OF ANIMAL CELL EXPRESSION SYSTEM WHICH CONFERS POSITION-INDEPENDENT AND ENHANCED FOREIGN GENE EXPRESSION

  • Yoon, Yeup;Kim, Jong-Mook;Kim, Jung-seob;Oh, Sun-Mo;Kim, Jong-Il;Yoon, Jae-Seung;Baek, Kwang-Hee
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2000년도 Proceedings of 2000 KSAM International Symposium and Spring Meeting
    • /
    • pp.178-181
    • /
    • 2000
  • In order to develop the novel gene expression system, we introduced new control elements which could influence the foreign gene expression in animal cells. When the foreign genes are introduced into the genome of higher eukaryotic cells, the expressions from these integrated genes are often low and can vary greatly depending on the positions of the integration sites due to the complex nature of the chromatin structures (1). First we screened the various DNA sequence elements which can function as an insulator of gene expression from these position effects and can cooperate with the SV40 enhancer/promoter. Among the several DNA elements from the various sources, we identified the particular DNA element which confers the increased frequency of the positive colonies, assayed by the reporter gene from stable selections indicating significantly reduced position effects. This element also showed the several fold-increased expression level as well as the copy-number dependent expression with host cell specificity. Second we modified the transcription termination element where we introduced the specific terminator in combination with SV40 polyA signal. This modified terminator showed the increased efficiency and the level of the gene expression. By combining these two elements, we made the animal cell expression system and tested successfully for the recombinant protein productions of TGF ${\beta}$-soluble receptor, Antithrombin III, and single chain Pro-Urokinase. [Supported by grants from MOCIE]

  • PDF

The Effect of Morphine on REST Expression in Human Neuroblastoma NMB Cells

  • Kim, Do-Kyung;Kim, Chun-Sung;Kim, Heung-Joong;Kook, Joong-Ki;Kim, Seung-Hee;Lee, Baek-Hee;Lee, Yun-Ho;Mo, Shin-Yeob;Loh, Horace H.
    • International Journal of Oral Biology
    • /
    • 제35권2호
    • /
    • pp.69-74
    • /
    • 2010
  • The mu opioid receptor (MOR) has been regarded as the main site of interaction with analgesics in major clinical use, particularly morphine. The repressor element-1 silencing transcription factor (REST) functions as a transcriptional repressor of neuronal genes in non-neuronal cells. However, it is expressed in certain mature neurons, suggesting that it may have complex and novel roles. In addition, the interactions between MOR and REST and their functions remain unclear. In this study, we examined the effects of morphine on the expression of REST mRNA and protein in human neuroblastoma NMB cells to investigate the roles of REST induced by MOR activation in neuronal cells. To determine the effects of morphine on REST expression, we performed RT-PCR, real-time quantitative RT-PCR, western blot analysis and radioligand binding assays in NMB cells. By RTPCR and real-time quantitative RT-PCR, the expression of REST was found to be unchanged by either the MOR agonist morphine or the MOR specific antagonist CTOP. By western blot, morphine was shown to significantly inhibit the expression of REST, but this suppression was completely blocked by treatment with CTOP. In the radioligand binding assay, the overexpression of REST led to an increased opioid ligand binding activity of endogenous MOR in the NMB cells. These results together suggest that morphine inhibits the expression of REST in human neuroblastoma cells through a post-transcriptional regulatory mechanism mediated through MOR.

$17{\beta}$-estradiol Prevents the Expression of $CEBP{\alpha}$-mediated Adipocyte Marker Genes in Female Ovariectomized C57BL/6 Mice

  • Yoon, Mi-Chung;Jeong, Sun-Hyo
    • 대한의생명과학회지
    • /
    • 제14권3호
    • /
    • pp.131-137
    • /
    • 2008
  • Adipogenesis is a complex sequence of events that culminates in the differentiation of fibroblast-like preadipocytes into specialized lipid-filled adipocytes and also involves a cascade of expression of many transcription factors such as peroxisome proliferator-activated receptor ${\gamma}(PPAR{\gamma})$ and CCAAT/enhancer-binding proteins (C/EBPs). $PPAR{\gamma}$ and C/EBPs transcriptionally transactivate adipocyte specific genes, including fatty acid transport protein (FAT/CD36) and leptin. To determine whether $17{\beta}$-estradiol modulates $C/EBP{\alpha}$ actions on adipogenesis in high fat diet-fed female ovariectomized (OVX) C57BL/6 mice, mice were treated with $17{\beta}$-estradiol for 7 days and the effects of $17{\beta}$-estradiol on adipose tissue mass and expression of adipocyte specific gene as well as $C/EBP{\alpha}$ were measured. Compared to vehicle-treated OVX control mice, OVX mice treated with $17{\beta}$-estradiol for 7 days had lower adipose tissue weights that were similar to weights in high fat diet-fed sham-operated (Sham) mice. OVX mice showed the increased expression of $C/EBP{\alpha}$ mRNA compared with Sham mice. However, $17{\beta}$-estradiol treatment in OVX mice inhibited OVX induced-$C/EBP{\alpha}$ activation, indicating that $17{\beta}$-estradiol may act as an inhibitor of $C/EBP{\alpha}$ action. Moreover, $17{\beta}$-estradiol decreased mRNA levels of adipocyte marker genes, such as lipoprotein lipase, FAT/CD36 and leptin, to levels in Sham mice. These results suggest that down-regulation of adipogenesis by $17{\beta}$-estradiol may be due to reduced adipose $C/EBP{\alpha}$ activities in female OVX C57BL/6 mice.

  • PDF

Role of gangliosides in the differentiation of human mesenchymal-derived stem cells into osteoblasts and neuronal cells

  • Moussavou, Ghislain;Kwak, Dong Hoon;Lim, Malg-Um;Kim, Ji-Su;Kim, Sun-Uk;Chang, Kyu-Tae;Choo, Young-Kug
    • BMB Reports
    • /
    • 제46권11호
    • /
    • pp.527-532
    • /
    • 2013
  • Gangliosides are complex glycosphingolipids that are the major component of cytoplasmic cell membranes, and play a role in the control of biological processes. Human mesenchymal stem cells (hMSCs) have received considerable attention as alternative sources of adult stem cells because of their potential to differentiate into multiple cell lineages. In this study, we focus on various functional roles of gangliosides in the differentiation of hMSCs into osteoblasts or neuronal cells. A relationship between gangliosides and epidermal growth factor receptor (EGFR) activation during osteoblastic differentiation of hMSCs was observed, and the gangliosides may play a major role in the regulation of the differentiation. The roles of gangliosides in osteoblast differentiation are dependent on the origin of hMSCs. The reduction of ganglioside biosynthesis inhibited the neuronal differentiation of hMSCs during an early stage of the differentiation process, and the ganglioside expression can be used as a marker for the identification of neuronal differentiation from hMSCs.

Insulin Induces Transcription of VEGF in Arnt-dependent but HIF-l$\alpha$-Independent Pathway

  • Park, Youngyeon;Park, Hyuns-Sung
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2001년도 추계학술대회 및 정기총회
    • /
    • pp.100-100
    • /
    • 2001
  • Hypoxia is a pathophysiological condition that occurs during injury, ischemia, and stroke. Hypoxic stress induces the expression of genes associated with increased energy flux, including the glucose transporters Glutl and Glut3, several glycolytic enzymes, nitric oxide synthase, erythropoietin and vascular endothelial growth factor. Induction of these genes is mediated by a common basic helix-loop-helix PAS transcription complex, the hypoxia-inducible factor-l${\alpha}$ (HIF-1${\alpha}$)/ aryl hydrocarbon receptor nuclear translocator (ARNT). Insulin plays a central role in regulating metabolic pathways associated with energy storage and utilization. It triggers the conversion of glucose into glycogen and triglycerides and inhibits gluconeogenesis. Insulin also induced hypoxia-induced genes. However the underlying mechanism is unestablished. Here, we study the possibility that transcription factor HIF-1${\alpha}$ is involved in insulin-induced gene expression. We investigate the mechanism that regulates hypoxia-inducible gene expression In response to insulin We demonstrate that insulin increases the transcription of hypoxia- inducible gene. Insulin-induced transcription is not detected in Arnt defective cell lines. Under hypoxic condition, HIF- l${\alpha}$ stabilizes but does not under insulin treatment. Insulin-induced gene expression is inhibited by presence of PI-3 kinase inhibitor and Akt dominant negative mutant, whereas hypoxia-induced gene expression is not. ROS inhibitor differently affects insulin-induced gene expressions and hypoxia-induced gene expressions. Our results demonstrate that insulin also regulates hypoxia-inducible gene expression and this process is dependent on Arnt. However we suggest HIF-l${\alpha}$ is not involved insulin-induced gene expression and insulin- and hypoxia- induces same target genes via different signaling pathway.

  • PDF

Tumor-Suppression Mechanisms of Protein Tyrosine Phosphatase O and Clinical Applications

  • Kang, Man-Man;Shan, Shun-Lin;Wen, Xu-Yang;Shan, Hu-Sheng;Wang, Zheng-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권15호
    • /
    • pp.6215-6223
    • /
    • 2015
  • Tyrosine phosphorylation plays an important role in regulating human physiological and pathological processes. Functional stabilization of tyrosine phosphorylation largely contributes to the balanced, coordinated regulation of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Research has revealed PTPs play an important suppressive role in carcinogenesis and progression by reversing oncoprotein functions. Receptor-type protein tyrosine phosphatase O (PTPRO) as one member of the PTPs family has also been identified to have some roles in tumor development. Some reports have shown PTPRO over-expression in tumors can not only inhibit the frequency of tumor cell division and induce tumor cell death, but also suppress migration. However, the tumor-suppression mechanisms are very complex and understanding is incomplete, which in some degree blocks the further development of PTPRO. Hence, in order to resolve this problem, we here have summarized research findings to draw meaningful conclusions. We found tumor-suppression mechanisms of PTPRO to be diverse, such as controlling G0/G1 of the tumor cell proliferation cycle, inhibiting substrate phosphorylation, down-regulating transcription activators and other activities. In clinical anticancer efforts, expression level of PTPRO in tumors can not only serve as a biomarker to monitor the prognosis of patients, but act as an epigenetic biomarker for noninvasive diagnosis. In addition, the re-activation of PTPRO in tumor tissues, not only can induce tumor volume reduction, but also enhance the susceptibility to chemotherapy drugs. So, we can propose that these research findings of PTPRO will not only support new study ideas and directions for other tumor-suppressors, importantly, but also supply a theoretical basis for researching new molecular targeting agents in the future.

Treatment of Epidermal Growth Factor (EGF) enhances Nuclear Maturation of Porcine Oocytes and Stimulates Expression of ER/Golgi Transport Proteins

  • Hwangbo, Yong;Oh, Hae-In;Lee, Sang-Hee;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • 한국발생생물학회지:발생과생식
    • /
    • 제21권2호
    • /
    • pp.131-138
    • /
    • 2017
  • This study was conducted to investigate stimulatory effect of epidermal growth factor (EGF) on nuclear maturation and the expression level of EGF-receptor (EGFR), GM-130 (a marker of Golgi apparatus), transport protein Sec61 subunit beta ($Sec61{\beta}$), and coatomer protein complex subunit gamma 2 (COPG2) in porcine oocytes. The cumulus-oocyte complexes were collected from follicle with 3-6 mm in diameter. They were incubated in medium with/without EGF for 22 h (IVM I) and subsequently incubated hormone-free medium with/without EGF for 22 h (IVM II). Nuclear maturation state was checked by aceto-orcein stain. Protein expression of EGFR, GM-130, $Sec61{\beta}$, and COPG2 were measured by immunofluorescence. In results, nuclear maturation of oocytes in EGF non-treated oocytes were significantly lower than EGF-treated groups at IVM I or IVM II stage (P<0.05), whereas maturational rate in EGF treatment groups at both of IVM stage was higher in among the all treatment groups (P<0.05). EGFR, GM-130, $Sec61{\beta}$ and COPG2 were expressed in the cytoplasm of oocytes. Especially, GM-130 and EGFR were strongly expressed, but $Sec61{\beta}$ and COPG2 were weakly expressed in cortical area of cytoplasm. The protein level of GM-130, $Sec61{\beta}$, and COPG2 were significantly higher in the EGF-treated groups (P<0.05). However EGFR was no difference between non EGF-treated groups and control. In conclusion, EGF plays an important role in the systems for oocyte maturation with endoplasmic reticulum and Golgi apparatus. In addition, the protein levels of $Sec61{\beta}$ and COPG2 could be changed by EGF in the porcine oocytes during maturation.

Effects of Eicosapentaenoic Acid and Docosahexaenoic Acid on Mitochondrial DNA Replication and PGC-1α Gene Expression in C2C12 Muscle Cells

  • Lee, Mak-Soon;Shin, Yoonjin;Moon, Sohee;Kim, Seunghae;Kim, Yangha
    • Preventive Nutrition and Food Science
    • /
    • 제21권4호
    • /
    • pp.317-322
    • /
    • 2016
  • Mitochondrial biogenesis is a complex process requiring coordinated expression of nuclear and mitochondrial genomes. The peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-$1{\alpha}$) is a key regulator of mitochondrial biogenesis, and it controls mitochondrial DNA (mtDNA) replication within diverse tissues, including muscle tissue. The aim of this study was to investigate the effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on mtDNA copy number and PGC-$1{\alpha}$ promoter activity in $C_2C_{12}$ muscle cells. mtDNA copy number and mRNA levels of genes related to mitochondrial biogenesis such as PGC-$1{\alpha}$, nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (Tfam) were assayed by quantitative real-time PCR. The PGC-$1{\alpha}$ promoter from -970 to +412 bp was subcloned into the pGL3-basic vector, which includes a luciferase reporter gene. Both EPA and DHA significantly increased mtDNA copy number, dose and time dependently, and up-regulated mRNA levels of PGC-$1{\alpha}$, NRF1, and Tfam. Furthermore, EPA and DHA stimulated PGC-$1{\alpha}$ promoter activity in a dose-dependent manner. These results suggest that EPA and DHA may modulate mitochondrial biogenesis, which was partially associated with increased mtDNA replication and PGC-$1{\alpha}$ gene expression in $C_2C_{12}$ muscle cells.

세로토닌 수송체와 기분장애 (5-HT Transporter and Mood Disorder)

  • 이민수
    • 생물정신의학
    • /
    • 제8권2호
    • /
    • pp.220-225
    • /
    • 2001
  • As numbers of serotonin's function are so many, studies of serotonin are numerous nowadays. In the beginning, concentration of metabolites such as 5-HIAA was a key issue, but recent studies have been challenged for serotonin receptor genes and their relation to mood disoder. Serotonin transporter(5-HTT) gene is a strong candidate gene of mood disoder for following reason. Serotonin transporter is a key protein in the serotonin pathway as it regulate the concentration of serotonin in the synaptic clept and essential pathophysiology of depression is dysregulation of 5-HTT so that all antidepressants have effect of 5-HTT antagonist. The decrease of 5-HTT in the platelet and in brain of the depressive patients is much consistent results in the studies of the pathophysiology of mood disorder till now. By this, we will be able to develop simple and easy marker for diagnosis, type, and treatment monitoring of depression. Many psychiatrists have sought the independent genes in relation to depression or schizophrenia. Obviously, the hereditary vulnerability contributes to etiology of mood disorders, but it is difficult to discriminate the independent genes because of many environmental factors. Moreover, in the hereditarily complex diseases such as mood disorder, the only vulnerability of gene can not sufficiently explain the etiology. In the future, to exclude the role of the gene-environmental interaction, the methods such as gene transfer can be considered. In the opposite direction, by using the gene destruction method, the role of target genes can be examined. As yet the concept of the gene expression, neural plasticity, neurogenesis and etc, is the elementary stage. The development of this field will help to establish the treatment strategy of chronic and refractory mood disorders.

  • PDF