• 제목/요약/키워드: Receptive field

검색결과 88건 처리시간 0.028초

하수처리 공정을 위한 Type-2 RBF Neural Networks 모델링 설계 (Design of Type-2 Radial Basis Function Neural Networks Modeling for Sewage Treatment Process)

  • 이승철;권학주;오성권
    • 전기학회논문지
    • /
    • 제64권10호
    • /
    • pp.1469-1478
    • /
    • 2015
  • In this paper, The methodology of Type-2 fuzzy set-based Radial Basis Function Neural Network(T2RBFNN) is proposed for Sewage Treatment Process and the simulator is developed for application to the real-world sewage treatment plant by using the proposed model. The proposed model has robust characteristic than conventional RBFNN. architecture of network consist of three layers such as input layer, hidden layer and output layer of RBFNN, and Type-2 fuzzy set is applied to receptive field in contrast with conventional radial basis function. In addition, the connection weights of the proposed model are defined as linear polynomial function, and then are learned through Back-Propagation(BP). Type reduction is carried out by using Karnik and Mendel(KM) algorithm between hidden layer and output layer. Sewage treatment data obtained from real-world sewage treatment plant is employed to evaluate performance of the proposed model, and their results are analyzed as well as compared with those of conventional RBFNN.

딥 러닝 기반의 팬옵틱 분할 기법 분석 (Survey on Deep Learning-based Panoptic Segmentation Methods)

  • 권정은;조성인
    • 대한임베디드공학회논문지
    • /
    • 제16권5호
    • /
    • pp.209-214
    • /
    • 2021
  • Panoptic segmentation, which is now widely used in computer vision such as medical image analysis, and autonomous driving, helps understanding an image with holistic view. It identifies each pixel by assigning a unique class ID, and an instance ID. Specifically, it can classify 'thing' from 'stuff', and provide pixel-wise results of semantic prediction and object detection. As a result, it can solve both semantic segmentation and instance segmentation tasks through a unified single model, producing two different contexts for two segmentation tasks. Semantic segmentation task focuses on how to obtain multi-scale features from large receptive field, without losing low-level features. On the other hand, instance segmentation task focuses on how to separate 'thing' from 'stuff' and how to produce the representation of detected objects. With the advances of both segmentation techniques, several panoptic segmentation models have been proposed. Many researchers try to solve discrepancy problems between results of two segmentation branches that can be caused on the boundary of the object. In this survey paper, we will introduce the concept of panoptic segmentation, categorize the existing method into two representative methods and explain how it is operated on two methods: top-down method and bottom-up method. Then, we will analyze the performance of various methods with experimental results.

Machine Learning of GCM Atmospheric Variables for Spatial Downscaling of Precipitation Data

  • Sunmin Kim;Masaharu Shibata;YasutoTachikawa
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.26-26
    • /
    • 2023
  • General circulation models (GCMs) are widely used in hydrological prediction, however their coarse grids make them unsuitable for regional analysis, therefore a downscaling method is required to utilize them in hydrological assessment. As one of the downscaling methods, convolutional neural network (CNN)-based downscaling has been proposed in recent years. The aim of this study is to generate the process of dynamic downscaling using CNNs by applying GCM output as input and RCM output as label data output. Prediction accuracy is compared between different input datasets, and model structures. Several input datasets with key atmospheric variables such as precipitation, temperature, and humidity were tested with two different formats; one is two-dimensional data and the other one is three-dimensional data. And in the model structure, the hyperparameters were tested to check the effect on model accuracy. The results of the experiments on the input dataset showed that the accuracy was higher for the input dataset without precipitation than with precipitation. The results of the experiments on the model structure showed that substantially increasing the number of convolutions resulted in higher accuracy, however increasing the size of the receptive field did not necessarily lead to higher accuracy. Though further investigation is required for the application, this paper can contribute to the development of efficient downscaling method with CNNs.

  • PDF

마취된 흰 쥐 시상의 복후내측핵내 유해성 뉴론의 특성 (RESPONSE CHARACTERISTICS OF VENTRAL POSTEROMEDIAL THALAMIC NOCICEPTIVE NEURONS IN THE ANESTHETIZED RAT)

  • 이형일;박수정
    • Restorative Dentistry and Endodontics
    • /
    • 제27권6호
    • /
    • pp.587-599
    • /
    • 2002
  • Extracellular single unit recordings were made from the ventral posteromedial thalamic (VPM) nociceptive neurons to determine mechanoreceptive field (RF) and response properties. A total of 44 VPM thalamic nociceptive neurons were isolated from rats anesthetized with urethane-chloralose. Based on responses to various mechanical stimuli including touch, pressure and pinch applied to the RF, 32 of 44 neurons were classified as nociceptive specific (NS) neuron. The other 12 neurons, classified as wide dynamic range (WDR), showed a graded response to increasingly intense stimuli, with a maximum discharge to noxious pinch. The VPM nociceptive neurons showed various spontaneous activity ranged from 0-6 Hz. They were located throughout the VPM, and had an contralateral RF including mainly intraoral (and perioral) regions. The RF size was relatively small, and very few neurons had a receptive field involving 3 trigeminal divisions. The NS neurons activated only by pressure and pinch stimuli had high mechanical thresholds compared to WDR neurons activated also by touch stimuli. The VPM nociceptive neurons were tested with suprathershold graded mechanical stimuli. Most of 21 NS and 8 WDR neurons showed a progressive increase in number of spikes as mechanical stimulus intensity was increased. In some neurons, the responses reached a peak before the highest intensity was given. Application of 5 mM $CoCl_2{\;}(10{\;}{\mu}\ell)$ solution to the trigeminal subnucleus caudalis did not produce any significant changes in the spontaneous activity, RF size, mechanical threshold, and response to suprathreshold mechanical stimuli of 9 VPM nociceptive neurons tested. 17 of 33 VPM nociceptive neurons responded to noxious heat as well as noxious mechanical stimuli applied to their RF. Application of the mustard oil, a small-fiber excitant and inflammatory irritant, to the right maxillary first molar tooth pulp induced an immediate but short-lasting neuronal discharges upto approximately 4 min in 16 of 42 VPM nociceptive neurons. These results suggest that VPM thalamic nucleus may contribute to the sensory discriminative aspect of orofacial nociception.

삼차신경 척수감각핵 문측소핵내 유해성 뉴론의 특성에 관한 연구 (THE STUDY ON THE CHARACTERISTICS OF NOCICEPTIVE NEURONS IN TRIGEMINAL SUBNUCLEUS ORALIS)

  • 온영석;박수정
    • Restorative Dentistry and Endodontics
    • /
    • 제24권4호
    • /
    • pp.614-622
    • /
    • 1999
  • Recent studies have implicated that more rostral components of the trigeminal spinal nucleus including subnucleus oralis (Vo) in orofacial nociceptive mechanisms. Since there is only limited electrophysiological evidence, the present study was initiated to characterize the receptive field and response properties of malls nociceptive neurons in chloralose/urethan-anesthetized rats. Single neuronal activity was recorded in right subnucleus oralis, and types of nociceptive neurons classified wide dynamic range (WDR), NS (nociceptive specific) and deep nociceptive (D) and the mechanoreceptive field (RF) and response properties were determined. A total of 34 nociceptive neurons could be subdivided into 17WDR neurons, 12NS neurons and 5D neurons. Vo nociceptive neurons had RF involving maxillary and/or mandibular divisions mainly located in the intraoral and/or perioral regions. Majority of Vo nociceptive neurons showed spontaneous activity less than 1Hz. The NS and D neurons activated only by heavy pressure and/or pinch stimuli had high mechanical thresholds compared to WDR neurons activated also by tactile stimuli. Vo nociceptive neurons showed a progressive increase of response to the graded mechanical stimuli. 39% of Vo nociceptive neurons received C-fiber electrical input as well as A-fiber electrical input from their RF, and 45% of them responded to electrical stimulation of the right maxillary first molar. 41% of Vo nociceptive neurons responded to noxious heat applied to their RF, and 18% of them showed an immediate burst of discharges following MO application to the right maxillary first molar pulp. These results indicate that Vo is involved in the transmission of nociceptive information mainly coming from intraoral or perioral region including tooth pulp.

  • PDF

세포내 기록법으로써 검출한 망막 신경원의 동적 특성 (Dynamic properties of the retinal neurons by using of the intracellular recording method)

  • 이성종;정창섭;배선호
    • 한국의학물리학회지:의학물리
    • /
    • 제9권2호
    • /
    • pp.95-104
    • /
    • 1998
  • 세포내 기록법으로써 메기 망막의 제3열신경원에 대한 동적 특성을 관찰하였다. 메기(channel catfish; Ictalurus punctatus)로부터 안구를 적출한 다음 각막, 홍채, 수정체, 초자체 둥을 차례로 제거함으로써 반구형의 eyecup 표본을 만들었다. 이 표본에 Ringer 용액 또는 실험용액을 관류시키면서 빛자극을 가함에 따라 신경원에서 발생하는 전압변동을 유리 미세전극을 통하여 검출하고 amplifier로써 증폭한 후 penwriter를 이용하여 기록하였다. 빛자극원으로는 컴퓨터 모니터를 이용하였으며, 막대형 자극의 이동속도 및 두께를 조절함으로써 대상 신경원의 위치를 포착하고 방향선택성을 조사하였다. GABA$_{B}$ 수용체 작용제인 baclofen에 의해 제3열신경원의 일종인 ON-지속성 신경원에서 암막전압은 과분극되며 지속성 성분은 억제된 반면 일과성 성분은 증대되었으며, 또한 ON-OFF 일과성 신경원은 특정 방향의 자극에 대한 빛반응이 선택적으로 억제되는 방향선택성을 나타내었다.

  • PDF

딥러닝의 모형과 응용사례 (Deep Learning Architectures and Applications)

  • 안성만
    • 지능정보연구
    • /
    • 제22권2호
    • /
    • pp.127-142
    • /
    • 2016
  • 딥러닝은 인공신경망(neural network)이라는 인공지능분야의 모형이 발전된 형태로서, 계층구조로 이루어진 인공신경망의 내부계층(hidden layer)이 여러 단계로 이루어진 구조이다. 딥러닝에서의 주요 모형은 합성곱신경망(convolutional neural network), 순환신경망(recurrent neural network), 그리고 심층신뢰신경망(deep belief network)의 세가지라고 할 수 있다. 그 중에서 현재 흥미로운 연구가 많이 발표되어서 관심이 집중되고 있는 모형은 지도학습(supervised learning)모형인 처음 두 개의 모형이다. 따라서 본 논문에서는 지도학습모형의 가중치를 최적화하는 기본적인 방법인 오류역전파 알고리즘을 살펴본 뒤에 합성곱신경망과 순환신경망의 구조와 응용사례 등을 살펴보고자 한다. 본문에서 다루지 않은 모형인 심층신뢰신경망은 아직까지는 합성곱신경망 이나 순환신경망보다는 상대적으로 주목을 덜 받고 있다. 그러나 심층신뢰신경망은 CNN이나 RNN과는 달리 비지도학습(unsupervised learning)모형이며, 사람이나 동물은 관찰을 통해서 스스로 학습한다는 점에서 궁극적으로는 비지도학습모형이 더 많이 연구되어야 할 주제가 될 것이다.

백서에서 삼차신경 유발전위의 특성과 경로 분석 (Characteristics of Trigeminal Evoked Potential and It's Pathway in the Rat)

  • 김세혁;조춘식;권오규;이배환;박용구;정상섭
    • Journal of Korean Neurosurgical Society
    • /
    • 제29권8호
    • /
    • pp.985-994
    • /
    • 2000
  • Objective : There are some advantages of trigeminal evoked potential(TEP) recording compared to other somatosensory evoked potential(SSEP) recordings. The trigeminal sensory pathway has a pure sensory nerve branch, a broader receptive field in cerebral cortex, and a shorter pathway. Despite these advantages, there is little agreement as to what constitutes a normal response and what wave forms truly characterize the intraoperative TEP. This study presents the normative data of TEP recorded on the epidural surface of the rat with a platinum ball electrode. Materials & Methods : Under general anesthesia with urethane, the adult Sprague-Dawley male rats(300-350g) were given electrical stimulation with two stainless steel electrodes which were inserted into the subcutaneous layer of the area around whiskers. A reference electrode was positioned in the temporalis muscle ipsilateral to the recording site. Results : TEPs were recorded in the Par I area of somatosensory cortex and recorded most apparently on the point of 2mm posterior from the bregma and 6mm lateral from the midline. The typical wave form consisted of 5 peaks (N1-P1-N2-P2-N3 according to emerging order, upward negativity). Each latency to corresponding peaks was not influenced by the different intensities of stimulation, especially from 1 to 5mA. Average latencies of 5 peaks were in the following order ; 7.7, 11.1, 15, 22.3, 29.4ms. There was also no significant difference between latencies before and after administration of muscle relaxant(pancuronium). For the electrophysiological localization of recorded waves, the action potential of a single unit was recorded with glass microelectrode(filled with 2M NaCl, $3-5M{\Omega}$) in the thalamus of rat. A sharp wave was recorded in the VPM nucleus, in which the latency was shorter than that of N1. This suggests that all 5 peaks were generated by neural activities in the suprathalamic pathway. Conclusion : In terms of recording near-field potentials, our data also suggests that TEP in the rat may be superior to other SSEPs. In overall, these results may afford normative data for the studies of supratentorial lesions such as hydrocephalus or cerebral ischemia which can have an influence on near-field potentials.

  • PDF

쥐에서 말초 자극에 따른 뇌피질 활성화의 자기공명 영상 (MR imaging of cortical activation by painful peripheral stimulation in rats)

  • 이배환;차명훈;정재준;이규홍;이철현;손진훈
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2009년도 추계학술대회
    • /
    • pp.183-185
    • /
    • 2009
  • As imaging technology develops, magnetic resonance imaging (MRI) techniques have contributed to the understanding of brain function by providing anatomical structure of the brain and functional imaging related to information processing. Manganese-enhanced MRI (MEMRI) techniques can provide useful information about functions of the nervous system. However, systematic studies regarding information processing of pain have not been conducted. The purpose of this study was to detect brain activation during painful electrical stimulation using MEMRI with high spatial resolution. Male Sprague-Dawley rats (250-300 g) were divided into 3 groups: normal control, sham stimulation, and electric stimulation. Rats were anesthetized with 2.5% isoflurane for surgery. Polyethylene catheter (PE-10) was placed in the external carotid artery to administrate mannitol and MnCl2. The blood brain barrier (BBB) was broken by 20% D-mannitol under anesthesia mixed with urethane and a-chloralose. The hind limb was electrically stimulated with a 2Hz (10V) frequency while MnCl2 was infused. Brain activation induced by electrical stimulation was detected using a 4.7 T MRI. Remarkable signal enhancement was observed in the primary sensory that corresponds to sensory tactile stimulation at the hind limb region. These results suggest that signal enhancement is related to functional activation following electrical stimulation of the peripheral receptive field.

  • PDF

Sensory Inputs to Upper Cervical Spinal Neurons Projecting to Midbrain in Cats

  • Kim, Jong-Ho;Jeong, Han-Seong;Park, Jong-Seong;Kim, Jong-Keun;Park, Sah-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권1호
    • /
    • pp.9-19
    • /
    • 1998
  • The present study was primarily carried out to characterize the properties of the spinomesencephalic tract (SMT) neurons that project from the upper cervical spinal segments to the midbrain. It was also investigated whether these neurons received convergent afferent inputs from other sources in addition to cervical inputs. Extracellular single unit recordings were made from neurons antidromically activated by stimulation of midbrain. Recording sites were located in lamina $I{\sim}VIII\;of\;C1{\sim}C3$ segments of spinal cord. Receptive field (RF) and response properties to mechanical stimulation were studied in 71 SMT neurons. Response profiles were classified into six groups: complex (Comp, n=9), wide dynamic range (WDR, n=16), low threshold (LT, n=5), high threshold (HT, n=6), deep/tap (Deep, n=10), and non- responsive (NR, n=25). Distributions of stimulation and recording sites were not significantly different between SMT groups classified upon their locations and/or response profiles. Mean conduction velocity of SMT neurons was $16.7{\pm}1.28\;m/sec$. Conduction velocities of SMTs recorded in superficial dorsal horn (SDH, n=15) were significantly slower than those of SMTs recorded in deep dorsal horn (DDH, n=18), lateral reticulated area (LRA, n=21), and intermediate zone and ventral horn (IZ/VH, n=15). Somatic RFs for SMTs in LRA and IZ/VH were significantly larger than those in SDH and DDH. Five SMT units (4 Comps and 1 HT) had inhibitory somatic RFs. About half (25/46) of SMT units have their RFs over trigeminal dermatome. Excitabilities of 5/12 cells and 9/13 cells were modulated by stimulation of ipsilateral phrenic nerve and vagus nerve, respectively. These results suggest that upper cervical SMT neurons are heterogenous in their function by showing a wide range of variety in location within the spinal gray matter, in response profile, and in convergent afferent input.

  • PDF