• Title/Summary/Keyword: Recent

Search Result 30,608, Processing Time 0.06 seconds

Predicting link of R&D network to stimulate collaboration among education, industry, and research (산학연 협업 활성화를 위한 R&D 네트워크 연결 예측 연구)

  • Park, Mi-yeon;Lee, Sangheon;Jin, Guocheng;Shen, Hongme;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.37-52
    • /
    • 2015
  • The recent global trends display expansion and growing solidity in both cooperative collaboration between industry, education, and research and R&D network systems. A greater support for the network and cooperative research sector would open greater possibilities for the evolution of new scholar and industrial fields and the development of new theories evoked from synergized educational research. Similarly, the national need for a strategy that can most efficiently and effectively support R&D network that are established through the government's R&D project research is on the rise. Despite the growing urgency, due to the habitual dependency on simple individual personal information data regarding R&D industry participants and generalized statistical data references, the policies concerning network system are disappointing and inadequate. Accordingly, analyses of the relationships involved for each subject who is participating in the R&D industry was conducted and on the foundation of an educational-industrial-research network system, possible changes within and of the network that may arise were predicted. To predict the R&D network transitions, Common Neighbor and Jaccard's Coefficient models were designated as the basic foundational models, upon which a new prediction model was proposed to address the limitations of the two aforementioned former models and to increase the accuracy of Link Prediction, with which a comparative analysis was made between the two models. Through the effective predictions regarding R&D network changes and transitions, such study result serves as a stepping-stone for an establishment of a prospective strategy that supports a desirable educational-industrial-research network and proposes a measure to promote the national policy to one that can effectively and efficiently sponsor integrated R&D industries. Though both weighted applications of Common Neighbor and Jaccard's Coefficient models provided positive outcomes, improved accuracy was comparatively more prevalent in the weighted Common Neighbor. An un-weighted Common Neighbor model predicted 650 out of 4,136 whereas a weighted Common Neighbor model predicted 50 more results at a total of 700 predictions. While the Jaccard's model demonstrated slight performance improvements in numeric terms, the differences were found to be insignificant.

An Integrated Model based on Genetic Algorithms for Implementing Cost-Effective Intelligent Intrusion Detection Systems (비용효율적 지능형 침입탐지시스템 구현을 위한 유전자 알고리즘 기반 통합 모형)

  • Lee, Hyeon-Uk;Kim, Ji-Hun;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.1
    • /
    • pp.125-141
    • /
    • 2012
  • These days, the malicious attacks and hacks on the networked systems are dramatically increasing, and the patterns of them are changing rapidly. Consequently, it becomes more important to appropriately handle these malicious attacks and hacks, and there exist sufficient interests and demand in effective network security systems just like intrusion detection systems. Intrusion detection systems are the network security systems for detecting, identifying and responding to unauthorized or abnormal activities appropriately. Conventional intrusion detection systems have generally been designed using the experts' implicit knowledge on the network intrusions or the hackers' abnormal behaviors. However, they cannot handle new or unknown patterns of the network attacks, although they perform very well under the normal situation. As a result, recent studies on intrusion detection systems use artificial intelligence techniques, which can proactively respond to the unknown threats. For a long time, researchers have adopted and tested various kinds of artificial intelligence techniques such as artificial neural networks, decision trees, and support vector machines to detect intrusions on the network. However, most of them have just applied these techniques singularly, even though combining the techniques may lead to better detection. With this reason, we propose a new integrated model for intrusion detection. Our model is designed to combine prediction results of four different binary classification models-logistic regression (LOGIT), decision trees (DT), artificial neural networks (ANN), and support vector machines (SVM), which may be complementary to each other. As a tool for finding optimal combining weights, genetic algorithms (GA) are used. Our proposed model is designed to be built in two steps. At the first step, the optimal integration model whose prediction error (i.e. erroneous classification rate) is the least is generated. After that, in the second step, it explores the optimal classification threshold for determining intrusions, which minimizes the total misclassification cost. To calculate the total misclassification cost of intrusion detection system, we need to understand its asymmetric error cost scheme. Generally, there are two common forms of errors in intrusion detection. The first error type is the False-Positive Error (FPE). In the case of FPE, the wrong judgment on it may result in the unnecessary fixation. The second error type is the False-Negative Error (FNE) that mainly misjudges the malware of the program as normal. Compared to FPE, FNE is more fatal. Thus, total misclassification cost is more affected by FNE rather than FPE. To validate the practical applicability of our model, we applied it to the real-world dataset for network intrusion detection. The experimental dataset was collected from the IDS sensor of an official institution in Korea from January to June 2010. We collected 15,000 log data in total, and selected 10,000 samples from them by using random sampling method. Also, we compared the results from our model with the results from single techniques to confirm the superiority of the proposed model. LOGIT and DT was experimented using PASW Statistics v18.0, and ANN was experimented using Neuroshell R4.0. For SVM, LIBSVM v2.90-a freeware for training SVM classifier-was used. Empirical results showed that our proposed model based on GA outperformed all the other comparative models in detecting network intrusions from the accuracy perspective. They also showed that the proposed model outperformed all the other comparative models in the total misclassification cost perspective. Consequently, it is expected that our study may contribute to build cost-effective intelligent intrusion detection systems.

A Study on the Intelligent Quick Response System for Fast Fashion(IQRS-FF) (패스트 패션을 위한 지능형 신속대응시스템(IQRS-FF)에 관한 연구)

  • Park, Hyun-Sung;Park, Kwang-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.163-179
    • /
    • 2010
  • Recentlythe concept of fast fashion is drawing attention as customer needs are diversified and supply lead time is getting shorter in fashion industry. It is emphasized as one of the critical success factors in the fashion industry how quickly and efficiently to satisfy the customer needs as the competition has intensified. Because the fast fashion is inherently susceptible to trend, it is very important for fashion retailers to make quick decisions regarding items to launch, quantity based on demand prediction, and the time to respond. Also the planning decisions must be executed through the business processes of procurement, production, and logistics in real time. In order to adapt to this trend, the fashion industry urgently needs supports from intelligent quick response(QR) system. However, the traditional functions of QR systems have not been able to completely satisfy such demands of the fast fashion industry. This paper proposes an intelligent quick response system for the fast fashion(IQRS-FF). Presented are models for QR process, QR principles and execution, and QR quantity and timing computation. IQRS-FF models support the decision makers by providing useful information with automated and rule-based algorithms. If the predefined conditions of a rule are satisfied, the actions defined in the rule are automatically taken or informed to the decision makers. In IQRS-FF, QRdecisions are made in two stages: pre-season and in-season. In pre-season, firstly master demand prediction is performed based on the macro level analysis such as local and global economy, fashion trends and competitors. The prediction proceeds to the master production and procurement planning. Checking availability and delivery of materials for production, decision makers must make reservations or request procurements. For the outsourcing materials, they must check the availability and capacity of partners. By the master plans, the performance of the QR during the in-season is greatly enhanced and the decision to select the QR items is made fully considering the availability of materials in warehouse as well as partners' capacity. During in-season, the decision makers must find the right time to QR as the actual sales occur in stores. Then they are to decide items to QRbased not only on the qualitative criteria such as opinions from sales persons but also on the quantitative criteria such as sales volume, the recent sales trend, inventory level, the remaining period, the forecast for the remaining period, and competitors' performance. To calculate QR quantity in IQRS-FF, two calculation methods are designed: QR Index based calculation and attribute similarity based calculation using demographic cluster. In the early period of a new season, the attribute similarity based QR amount calculation is better used because there are not enough historical sales data. By analyzing sales trends of the categories or items that have similar attributes, QR quantity can be computed. On the other hand, in case of having enough information to analyze the sales trends or forecasting, the QR Index based calculation method can be used. Having defined the models for decision making for QR, we design KPIs(Key Performance Indicators) to test the reliability of the models in critical decision makings: the difference of sales volumebetween QR items and non-QR items; the accuracy rate of QR the lead-time spent on QR decision-making. To verify the effectiveness and practicality of the proposed models, a case study has been performed for a representative fashion company which recently developed and launched the IQRS-FF. The case study shows that the average sales rateof QR items increased by 15%, the differences in sales rate between QR items and non-QR items increased by 10%, the QR accuracy was 70%, the lead time for QR dramatically decreased from 120 hours to 8 hours.

Product Recommender Systems using Multi-Model Ensemble Techniques (다중모형조합기법을 이용한 상품추천시스템)

  • Lee, Yeonjeong;Kim, Kyoung-Jae
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.39-54
    • /
    • 2013
  • Recent explosive increase of electronic commerce provides many advantageous purchase opportunities to customers. In this situation, customers who do not have enough knowledge about their purchases, may accept product recommendations. Product recommender systems automatically reflect user's preference and provide recommendation list to the users. Thus, product recommender system in online shopping store has been known as one of the most popular tools for one-to-one marketing. However, recommender systems which do not properly reflect user's preference cause user's disappointment and waste of time. In this study, we propose a novel recommender system which uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user's preference. The research data is collected from the real-world online shopping store, which deals products from famous art galleries and museums in Korea. The data initially contain 5759 transaction data, but finally remain 3167 transaction data after deletion of null data. In this study, we transform the categorical variables into dummy variables and exclude outlier data. The proposed model consists of two steps. The first step predicts customers who have high likelihood to purchase products in the online shopping store. In this step, we first use logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. We perform above data mining techniques using SAS E-Miner software. In this study, we partition datasets into two sets as modeling and validation sets for the logistic regression and decision trees. We also partition datasets into three sets as training, test, and validation sets for the artificial neural network model. The validation dataset is equal for the all experiments. Then we composite the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. Bagging is the abbreviation of "Bootstrap Aggregation" and it composite outputs from several machine learning techniques for raising the performance and stability of prediction or classification. This technique is special form of the averaging method. Bumping is the abbreviation of "Bootstrap Umbrella of Model Parameter," and it only considers the model which has the lowest error value. The results show that bumping outperforms bagging and the other predictors except for "Poster" product group. For the "Poster" product group, artificial neural network model performs better than the other models. In the second step, we use the market basket analysis to extract association rules for co-purchased products. We can extract thirty one association rules according to values of Lift, Support, and Confidence measure. We set the minimum transaction frequency to support associations as 5%, maximum number of items in an association as 4, and minimum confidence for rule generation as 10%. This study also excludes the extracted association rules below 1 of lift value. We finally get fifteen association rules by excluding duplicate rules. Among the fifteen association rules, eleven rules contain association between products in "Office Supplies" product group, one rules include the association between "Office Supplies" and "Fashion" product groups, and other three rules contain association between "Office Supplies" and "Home Decoration" product groups. Finally, the proposed product recommender systems provides list of recommendations to the proper customers. We test the usability of the proposed system by using prototype and real-world transaction and profile data. For this end, we construct the prototype system by using the ASP, Java Script and Microsoft Access. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The participants for the survey are 173 persons who use MSN Messenger, Daum Caf$\acute{e}$, and P2P services. We evaluate the user satisfaction using five-scale Likert measure. This study also performs "Paired Sample T-test" for the results of the survey. The results show that the proposed model outperforms the random selection model with 1% statistical significance level. It means that the users satisfied the recommended product list significantly. The results also show that the proposed system may be useful in real-world online shopping store.

Development of Customer Sentiment Pattern Map for Webtoon Content Recommendation (웹툰 콘텐츠 추천을 위한 소비자 감성 패턴 맵 개발)

  • Lee, Junsik;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.67-88
    • /
    • 2019
  • Webtoon is a Korean-style digital comics platform that distributes comics content produced using the characteristic elements of the Internet in a form that can be consumed online. With the recent rapid growth of the webtoon industry and the exponential increase in the supply of webtoon content, the need for effective webtoon content recommendation measures is growing. Webtoons are digital content products that combine pictorial, literary and digital elements. Therefore, webtoons stimulate consumer sentiment by making readers have fun and engaging and empathizing with the situations in which webtoons are produced. In this context, it can be expected that the sentiment that webtoons evoke to consumers will serve as an important criterion for consumers' choice of webtoons. However, there is a lack of research to improve webtoons' recommendation performance by utilizing consumer sentiment. This study is aimed at developing consumer sentiment pattern maps that can support effective recommendations of webtoon content, focusing on consumer sentiments that have not been fully discussed previously. Metadata and consumer sentiments data were collected for 200 works serviced on the Korean webtoon platform 'Naver Webtoon' to conduct this study. 488 sentiment terms were collected for 127 works, excluding those that did not meet the purpose of the analysis. Next, similar or duplicate terms were combined or abstracted in accordance with the bottom-up approach. As a result, we have built webtoons specialized sentiment-index, which are reduced to a total of 63 emotive adjectives. By performing exploratory factor analysis on the constructed sentiment-index, we have derived three important dimensions for classifying webtoon types. The exploratory factor analysis was performed through the Principal Component Analysis (PCA) using varimax factor rotation. The three dimensions were named 'Immersion', 'Touch' and 'Irritant' respectively. Based on this, K-Means clustering was performed and the entire webtoons were classified into four types. Each type was named 'Snack', 'Drama', 'Irritant', and 'Romance'. For each type of webtoon, we wrote webtoon-sentiment 2-Mode network graphs and looked at the characteristics of the sentiment pattern appearing for each type. In addition, through profiling analysis, we were able to derive meaningful strategic implications for each type of webtoon. First, The 'Snack' cluster is a collection of webtoons that are fast-paced and highly entertaining. Many consumers are interested in these webtoons, but they don't rate them well. Also, consumers mostly use simple expressions of sentiment when talking about these webtoons. Webtoons belonging to 'Snack' are expected to appeal to modern people who want to consume content easily and quickly during short travel time, such as commuting time. Secondly, webtoons belonging to 'Drama' are expected to evoke realistic and everyday sentiments rather than exaggerated and light comic ones. When consumers talk about webtoons belonging to a 'Drama' cluster in online, they are found to express a variety of sentiments. It is appropriate to establish an OSMU(One source multi-use) strategy to extend these webtoons to other content such as movies and TV series. Third, the sentiment pattern map of 'Irritant' shows the sentiments that discourage customer interest by stimulating discomfort. Webtoons that evoke these sentiments are hard to get public attention. Artists should pay attention to these sentiments that cause inconvenience to consumers in creating webtoons. Finally, Webtoons belonging to 'Romance' do not evoke a variety of consumer sentiments, but they are interpreted as touching consumers. They are expected to be consumed as 'healing content' targeted at consumers with high levels of stress or mental fatigue in their lives. The results of this study are meaningful in that it identifies the applicability of consumer sentiment in the areas of recommendation and classification of webtoons, and provides guidelines to help members of webtoons' ecosystem better understand consumers and formulate strategies.

Selective Word Embedding for Sentence Classification by Considering Information Gain and Word Similarity (문장 분류를 위한 정보 이득 및 유사도에 따른 단어 제거와 선택적 단어 임베딩 방안)

  • Lee, Min Seok;Yang, Seok Woo;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.105-122
    • /
    • 2019
  • Dimensionality reduction is one of the methods to handle big data in text mining. For dimensionality reduction, we should consider the density of data, which has a significant influence on the performance of sentence classification. It requires lots of computations for data of higher dimensions. Eventually, it can cause lots of computational cost and overfitting in the model. Thus, the dimension reduction process is necessary to improve the performance of the model. Diverse methods have been proposed from only lessening the noise of data like misspelling or informal text to including semantic and syntactic information. On top of it, the expression and selection of the text features have impacts on the performance of the classifier for sentence classification, which is one of the fields of Natural Language Processing. The common goal of dimension reduction is to find latent space that is representative of raw data from observation space. Existing methods utilize various algorithms for dimensionality reduction, such as feature extraction and feature selection. In addition to these algorithms, word embeddings, learning low-dimensional vector space representations of words, that can capture semantic and syntactic information from data are also utilized. For improving performance, recent studies have suggested methods that the word dictionary is modified according to the positive and negative score of pre-defined words. The basic idea of this study is that similar words have similar vector representations. Once the feature selection algorithm selects the words that are not important, we thought the words that are similar to the selected words also have no impacts on sentence classification. This study proposes two ways to achieve more accurate classification that conduct selective word elimination under specific regulations and construct word embedding based on Word2Vec embedding. To select words having low importance from the text, we use information gain algorithm to measure the importance and cosine similarity to search for similar words. First, we eliminate words that have comparatively low information gain values from the raw text and form word embedding. Second, we select words additionally that are similar to the words that have a low level of information gain values and make word embedding. In the end, these filtered text and word embedding apply to the deep learning models; Convolutional Neural Network and Attention-Based Bidirectional LSTM. This study uses customer reviews on Kindle in Amazon.com, IMDB, and Yelp as datasets, and classify each data using the deep learning models. The reviews got more than five helpful votes, and the ratio of helpful votes was over 70% classified as helpful reviews. Also, Yelp only shows the number of helpful votes. We extracted 100,000 reviews which got more than five helpful votes using a random sampling method among 750,000 reviews. The minimal preprocessing was executed to each dataset, such as removing numbers and special characters from text data. To evaluate the proposed methods, we compared the performances of Word2Vec and GloVe word embeddings, which used all the words. We showed that one of the proposed methods is better than the embeddings with all the words. By removing unimportant words, we can get better performance. However, if we removed too many words, it showed that the performance was lowered. For future research, it is required to consider diverse ways of preprocessing and the in-depth analysis for the co-occurrence of words to measure similarity values among words. Also, we only applied the proposed method with Word2Vec. Other embedding methods such as GloVe, fastText, ELMo can be applied with the proposed methods, and it is possible to identify the possible combinations between word embedding methods and elimination methods.

Spatial Environment Planning for Ecological Environment Conservation - Centering on an Area in the Gyeonggi Province - (생태환경 보전을 위한 공간환경계획 수립방안 - 경기도 일원에의 사례 적용 -)

  • Choi, Hee-Sun;Park, Ju-hyeon;Kim, Hyeon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.39 no.1
    • /
    • pp.22-34
    • /
    • 2011
  • In recent years, there has been an active movement toward databasing, systematizing, and unifying environmental information. Such efforts facilitate the utilization of spatial environment planning in environment conservation officially planned at the metropolitan and provincial levels. This in turn clarifies the management direction of space, thereby serving as an effective tool with which to not only conserve land, but also provide a reasonable compromise to all the related solutions at odds with one another. As such, this study forwards a method for inclusion of spatial environment planning in environment conservation plans, paying particular attention to the place, with in such a planning method, of the natural ecosystem, arguably the most sensitive arena among environmental factors. Spatial environment planning can be broadly divided as follows: first, basic direction; second, collection of spatial information; third, compilation of status of spatial environment; and fourth, management strategy for spatial environment. In particular, the second phase, namely the collection of spatial information, delineates clearly spatial information hitherto amassed by government agencies at both the national and local levels; the ensuing lists facilitate maximum utilization of the previously accumulated data. Used during the planning phase, status maps should include not only the status of land use(land cover), but also systematic data on the superior resources of the natural ecosystem as well as the status of the given spatial environment. Establishing plans for ecological networks, their conservation, and restoration areas based on the aforementioned aspects, this study sought to formulate ways in which to spatialize environment conservation plans that encompass consideration for the natural ecosystem. Devised based previous studies and examples, the compilation of status and plans as stated, applied to Gyeonggi Province, afforded an examination of the potential applicability and usability of the proposed plans. Ultimately, these will contribute not only to the establishment of plans encompassing consideration for the value and level of significance of the given natural ecosystem in spatial development planning, but also provide fundamental data for investigating appropriateness of plans and validity of location in any regional development plan.

Conflicts between the Conservation and Removal of the Modern Historic Landscapes - A Case of the Demolition Controversy of the Japanese General Government Building in Seoul - (근대 역사 경관의 보존과 철거 - 구 조선총독부 철거 논쟁을 사례로 -)

  • Son, Eun-Shin;Pae, Jeong-Hann
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.4
    • /
    • pp.21-35
    • /
    • 2018
  • In recent years, there has been a tendency to reuse 'landscapes of memory,' including industrial heritages, modern cultural heritages, and post-industrial parks, as public spaces in many cities. Among the various types of landscapes, 'modern historic landscapes', which were formed in the 19th and 20th centuries, are landscapes where the debate between conservation and removal is most frequent, according to the change of evaluation and recognition of modern history. This study examines conflicts between conservation and removal around modern historic landscapes and explores the value judgment criteria and the process of formation of those landscapes, as highlighted in the case of the demolition controversy of the old Japanese general government building in Seoul, which was dismantled in 1995. First, this study reviews newspaper articles, television news and debate programs from 1980-1999 and some articles related to the controversy of the Japanese general government building. Then it draws the following six factors as the main issues of the demolition controversy of the building: symbolic location, discoveries and responses of new historical facts, reaction and intervention of a related country, financial conditions, function and usage of the landscape, changes of urban, historical and architectural policies. Based on these issues, this study examines the conflicts between symbolic values that play an important role in the formation of modern historic landscapes and determines conservation or removal, and the utility of functional values that solve the problems and respond to criticisms that arise in the process of forming the modern historic landscape. Especially, it is noted that the most important factor that makes the decision is the symbolic values, although the determination of the conservation or removal of modern historic landscapes has changed according to changes in historical perceptions of modern history. Today, the modern historic landscape is an important site for urban design, and still has historical issues to be agreed upon and addressed. Thi study has contemporary significance from the point that it divides the many values of modern historic landscapes into symbolic values and functional values, evaluates these, and reviews the background social context.

An Efficient Algorithm for Streaming Time-Series Matching that Supports Normalization Transform (정규화 변환을 지원하는 스트리밍 시계열 매칭 알고리즘)

  • Loh, Woong-Kee;Moon, Yang-Sae;Kim, Young-Kuk
    • Journal of KIISE:Databases
    • /
    • v.33 no.6
    • /
    • pp.600-619
    • /
    • 2006
  • According to recent technical advances on sensors and mobile devices, processing of data streams generated by the devices is becoming an important research issue. The data stream of real values obtained at continuous time points is called streaming time-series. Due to the unique features of streaming time-series that are different from those of traditional time-series, similarity matching problem on the streaming time-series should be solved in a new way. In this paper, we propose an efficient algorithm for streaming time- series matching problem that supports normalization transform. While the existing algorithms compare streaming time-series without any transform, the algorithm proposed in the paper compares them after they are normalization-transformed. The normalization transform is useful for finding time-series that have similar fluctuation trends even though they consist of distant element values. The major contributions of this paper are as follows. (1) By using a theorem presented in the context of subsequence matching that supports normalization transform[4], we propose a simple algorithm for solving the problem. (2) For improving search performance, we extend the simple algorithm to use $k\;({\geq}\;1)$ indexes. (3) For a given k, for achieving optimal search performance of the extended algorithm, we present an approximation method for choosing k window sizes to construct k indexes. (4) Based on the notion of continuity[8] on streaming time-series, we further extend our algorithm so that it can simultaneously obtain the search results for $m\;({\geq}\;1)$ time points from present $t_0$ to a time point $(t_0+m-1)$ in the near future by retrieving the index only once. (5) Through a series of experiments, we compare search performances of the algorithms proposed in this paper, and show their performance trends according to k and m values. To the best of our knowledge, since there has been no algorithm that solves the same problem presented in this paper, we compare search performances of our algorithms with the sequential scan algorithm. The experiment result showed that our algorithms outperformed the sequential scan algorithm by up to 13.2 times. The performances of our algorithms should be more improved, as k is increased.

The Case on Valuation of IT Enterprise (IT 기업의 가치평가 사례연구)

  • Lee, Jae-Il;Yang, Hae-Sul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.881-893
    • /
    • 2007
  • IT(Information Technology)-based industries have caused a recent digital revolution and the appearance of various types' information service, being largely expanded toward info-communication device company, info-communication service company, software company etc.. Therefore, the needs to evaluate the company value of IT business for M&A or liquidation are growing tremendously. Unlike other industries, however, IT industry has a short lift cycle and so it doesn't have not only a company value-evaluating model for general businesses but the objective one for IT companies yet. So, this thesis analyzes various value-evaluating technique and newly rising ROV. DCF, the change method of company's cash flow including tangible assets into future value, had been applied during the past industrialization economy era and has been persuasively applied to the present. However, the DCF valuation has no option but to make many mistakes because IT companies have more intangible assets than tangible assets. Accordingly, it is ROV, recognized as the new method of evaluating companies' various options normally and quantitatively, that is brought up recently. But the evaluation on the companies' various options is too subjective and theoretical up to now and due to the lack of objective ground and options, it's not possible to be applied to reality. In this thesis, it is found that ROV is more accurate than DCF, comparing DCF and ROV through four examples. As the options applied to ROV are excessively limited, we tried to develop ROV into a new method by deriving five invisible value factors within IT companies. Therefore, on this occasion, we should set up the basic valuation methods on IT companies and should research and develop an effective and various valuation methods suitable to each company like an internet-based company, a S/W developing enterprise, a network-related company among IT companies.

  • PDF