• Title/Summary/Keyword: Receiver dryer

Search Result 4, Processing Time 0.017 seconds

Optimum Design Scheme of Receiver Dryer in an Automotive Air-Conditioning System using HFC-134a Refrigerant (신냉매용 자동차 에어콘 시스템에서의 건조기 설계에 관한 연구(온도감응식 팽창밸브의 개도에 따른))

  • 송유호;김령훈;송영길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.187-195
    • /
    • 1996
  • Because an alternative refrigerant(HFC-134a) is being used instead of CFC-12 for automotive air-conditioning system, newly designed air-conditioning components are necessary due to changes in characteristics. Optimum design scheme for receiver dryer in an automotive air-conditioning system is described with emphases upon the volume of desiccant and container. The volume of the container, that is manufactured based on the study, is reduced down to one half of the existing receiver dryers.

  • PDF

Development on the Sub-Cooled Hybrid Condenser in Automotive Air-Conditioning System (자동차 냉방시스템에서 건조기 일체형 응축기 개발)

  • 김경훈;장주섭;박종일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.70-76
    • /
    • 2003
  • An experimental study was performed to understand the heat transfer and fluid dynamic characteristics of Sub-Cooled Hybrid Condenser (SCHC), which conventional condenser and receiver dryer are integrated into. SCHC also employs a sub-cooled refrigerant passages at the end of the condenser in order to supply perfect liquid refrigerant to the expansion unit. Throughout the present study, it was found that the developed SCHC increases in the degree of sub-cooling by 10~100% compared to conventional condenser. The excessive sub-cooling has improved the cooling performance by 10%, and that leads reduction in evaporator outlet air temperature by $1.5^{\circ}C$. Also found through the study is that the refrigerant pressure drop across SCHC is fairly increased due to insertion of the desiccant cartridge in the receiver tank which is composed of zeolite, filter and supporter plate.

Performance Analysis of Integral Receiver/Dryer Condenser for Automobile (자동차용 리시버/건조기 일체형 응축기의 성능해석)

  • Won, Sung-Pil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.3
    • /
    • pp.245-252
    • /
    • 2007
  • The important problems from the point of view of preventing global warming are to save the power consumption of automotive air-conditioning systems and reduce the refrigerant amount filled. To achieve such requirements, integral receiver/dryer (R/D) condensers were developed recently. Typical integral R/D condensers have extra headers that play the role of R/D. Except an extra header and somewhat complex tube array resulting from the extra header, the most integral R/D condensers have almost the same specification that tube has multi channels, fin has louvers, flow in tube is parallel, etc. When integral condensers are applied, it is known that the refrigerating effect increases, resulting from the increase of subcooling degree in condenser, and the refrigerant amount used saves. In spite of several merits, integral condensers have not been applied a lot. That is why there is an uncertainty in performance, using integral condensers. The objective of this study is to theoretically optimize the tube array in an integral R/D condenser that is really being applied to some vehicles. The tube array has a great effect on the performance of the integral condenser as well as common ones. Through computer simulation, we could see that the tube array, 14-6-3-5-3-4, in the same condenser was the best, comparing heat release rate, pressure drop, etc. to the real array, 17-5-3-3-2-5. It should be noted that the optimization is based on the condenser performance only.

Performance Characteristics of Sub-Cooled Hybrid Condenser in Automotive Air-Conditioning System (자동차 공조시스템에서 건조기 일체형 응축기의 성능특성)

  • 김경훈;김석우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.205-210
    • /
    • 2004
  • Sub-cooled hybrid condenser(SCHC) which have been developed through this study is an appliance of integrating a condenser with a receiver dryer, which were previously separated. It is supposed that the development of sub-cooled hybrid condenser will be able to reduce not only weight, size, production process and cost, but also quite improve in capability, which will be of great use for the technological development and research of an air conditioning system whose importance is higher in a car. Through the present study it was found that the developed SCHC increases in the degree of sub-cooling by 10∼100% compared to conventional condenser. The excessive sub-cool has improved the cooling performance by 10%, and that leads to the reduction in evaporator outlet air temperature $1.5^{\circ}C$. Additionally, it is expected that sub-cooled hybrid condenser weights less by 100g than the previous condensers which has equal super heat.