• 제목/요약/키워드: Receiver Systems

검색결과 1,449건 처리시간 0.027초

주광이 무선 광통신 시스템의 수신 감도에 미치는 영향 (Impact of Solar Irradiance on the Receiver Sensitivity of Free-Space Optical Communication Systems)

  • 박기홍;김훈
    • 한국광학회지
    • /
    • 제31권6호
    • /
    • pp.259-267
    • /
    • 2020
  • 실외에서 운용되는 무선 광통신 시스템의 수신기는 태양광에 직·간접적으로 노출되기 마련이다. 본 논문에서는 주광이 무선 광통신 시스템의 수신 감도에 미치는 영향을 정량적으로 분석하였다. 이를 위하여 방사 조도 측정치를 활용하여 지상에 위치한 수신기에 특정 시야각으로 직접 또는 간접적으로 입사하는 단위 면적당 태양광 전력 스펙트럼 밀도를 얻었고, 이 값을 이용하여 세기 변조/직접 검출 및 코히어런트 시스템의 성능 열화를 계산하였다. 분석 결과 주광이 수신기에 간접적으로 인가되는 경우 수신 감도 페널티가 시스템 종류에 관계없이 1.3 dB 이하였으나, 직접적으로 인가되는 경우에는 30 dB 이상의 매우 큰 수신 감도 열화가 발생하였다. 또한 이러한 수신 감도 열화는 편광자 사용 또는 광학 필터 대역폭 조절에 의해서도 거의 경감되지 않았다.

Joint Kalman Channel Estimation and Turbo Equalization for MIMO OFDM Systems over Fast Fading Channels

  • Chang, Yu-Kuan;Ueng, Fang-Biau;Shen, Ye-Shun;Liao, Chih-Yuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권11호
    • /
    • pp.5394-5409
    • /
    • 2019
  • The paper investigates a novel detector receiver with Kalman channel information estimator and iterative channel response equalization for MIMO (multi-input multi-output) OFDM (orthogonal frequency division multiplexing) communication systems in fast multipath fading environments. The performances of the existing linear equalizers (LE) are not good enough over most fast fading multipath channels. The existing adaptive equalizer with decision feedback structure (ADFE) can improve the performance of LE. But error-propagation effect seriously degrades the system performance of the ADFE, especially when operated in fast multipath fading environments. By considering the Kalman channel impulse response estimation for the fast fading multipath channels based on CE-BEM (complex exponential basis expansion) model, the paper proposes the iterative receiver with soft decision feedback equalization (SDFE) structure in the fast multipath fading environments. The proposed SDFE detector receiver combats the error-propagation effect for fast multipath fading channels and outperform the existing LE and ADFE. We demonstrate several simulations to confirm the ability of the proposed iterative receiver over the existing receivers.

A Novel Adaptive Turbo Receiver for Large-Scale MIMO Communications

  • Chang, Yu-Kuan;Ueng, Fang-Biau;Tsai, Bo-Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권7호
    • /
    • pp.2998-3017
    • /
    • 2018
  • Massive (large-scale) MIMO (multiple-input multiple-output) is one of the key technologies in next-generation wireless communication systems. This paper proposes a high-performance low-complexity turbo receiver for SC-FDMA (single-carrier frequency-division multiple access) based MMIMO (massive MIMO) systems. Because SC-FDMA technology has the desirable characteristics of OFDMA (orthogonal frequency division multiple access) and the low PAPR (peak-to-average power ratio) of SC transmission schemes, the 3GPP LTE (long-term evolution) has adopted it as the uplink transmission to meet the demand high data rate and low error rate performance. The complexity of computing will be increased greatly in base station with massive MIMO (MMIMO) system. In this paper, a low-complexity adaptive turbo equalization receiver based on normalized minimal symbol-error-rate for MMIMO SC-FDMA system is proposed. The proposed receiver is with low complexity than that of the conventional turbo MMSE (minimum mean square error) equalizer and is also with better bit error rate (BER) performance than that of the conventional adaptive turbo MMSE equalizer. Simulation results confirm the effectiveness of the proposed scheme.

이동로봇의 위치측정을 위한 개선된 초음파 위성 시스템 (Improved Ultrasonic Satellite System for the Localization of Mobile Robots)

  • 김수용;윤강섭
    • 제어로봇시스템학회논문지
    • /
    • 제17권12호
    • /
    • pp.1240-1247
    • /
    • 2011
  • The localization of mobile robot in environment is a major concern in mobile robot navigation. So, many kinds of localization techniques have been researched for several years. Among them, the positioning system using ultrasound has received attention. Most of these ultrasonic positioning systems to synchronize the transmitters and receivers are used for RF (Radio Frequencies). However, due to the use of RF, the interference problems can not be avoided and the performance of radio frequencies directly affects the positioning performance. So we proposed the ultrasonic positioning system without synchronizing RF. The proposed system is based on existing USAT (Ultrasonic Satellite System) adopted infrastructure transmitting type, and consists of transmitter and receiver synchronizing modules instead of the radio frequency transmitters and receiver. The ultrasonic transmitters and receivers are synchronized individually by the transmitter and receiver synchronizing modules. In order to calculate the bias between the transmitter and receiver synchronizing modules, new positioning algorithm similar to GPS was proposed. The positioning performance of the improved USAT without synchronizing RF and the validity of the proposed positioning algorithm are verified and evaluated by experiments.

Turbo MIMO-OFDM Receiver in Time-Varying Channels

  • Chang, Yu-Kuan;Ueng, Fang-Biau;Jhang, Yi-Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권8호
    • /
    • pp.3704-3724
    • /
    • 2018
  • This paper proposes an advanced turbo receiver with joint inter-carrier interference (ICI) self cancellation and channel equalization for multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems over rapidly time-varying channel environment. The ICI caused by impairment of local oscillators and carrier frequency offset (CFO) is the major problem for MIMO-OFDM communication systems. The existing schemes (conjugate cancellation (CC) and phase rotated conjugate cancellation (PRCC)) that deal with the ICI cancellation and channel equalization can't provide satisfactory performance over time-varying channels. In term of error rate performance and low computational complexity, ICI self cancellation is the best choice. So, this paper proposes a turbo receiver to deal with the problem of joint ICI self cancellation and channel equalization. We employ the adaptive phase rotations in the receiver to effectively track the CFO variations without feeding back the CFO estimate to the transmitter as required in traditional existing scheme. We also give some simulations to verify the proposed scheme. The proposed schene outperforms the existing schemes.

SDR 수신기를 이용한 위성항법 기만신호 효과도 분석 (Analysis on GNSS Spoofing signal effects using SDR receiver)

  • 조지행
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권2호
    • /
    • pp.97-102
    • /
    • 2019
  • 위성항법 시스템은 민간 분야뿐만 아니라 군의 다양한 무기체계에서 위치 및 시각 동기화 등의 중요한 정보를 제공하는 역할을 수행하고 있으며 활용분야와 의존도가 높아지고 있다. 이에 따라, 위성항법 장치를 활용하는 무기체계에 대응하기 위해 전자파를 방사하여 위성항법장치를 기만하고자 하는 연구가 활발히 이루어지고 있다. 위성항법 기만신호는 수신기에 전파 교란신호를 방사하여 항법을 하지 못하도록 하거나 허위 위치와 속도로 오인하도록 유도하는 기술을 의미한다. 그 중 스푸핑 기술은 기만하고자 하는 수신기에서 수신하고 있는 코드 위상/도플러 주파수/항법 메시지와 동기되어 위성항법 신호 대신 기만신호를 획득하고 추적할 수 있도록 신호를 송신해주는 것이다. 본 논문에서는 SDR 수신기를 이용하여 GPS L1 C/A 기만신호에 의한 수신기 추적 알고리즘 영향성을 분석하고 기만 신호에 대한 효과도를 분석하였다.

간섭신호 감쇄필터 설계를 위한 고분해능의 GPS 수신기 플랫폼 개발 (Development of a GPS Receiver Platform with High Resolution to Design of Interference Excision Filters)

  • 김용현;조종철;류메린;임덕원;신미영;박찬식;이상정
    • 제어로봇시스템학회논문지
    • /
    • 제14권10호
    • /
    • pp.1073-1080
    • /
    • 2008
  • A GPS receiver platform has been developed to design an interference rejection filter and the platform is also able to evaluate performance of those filters. This platform consists of RF/IF part, data acquisition part and PC part. The RF/IF part converts RF signals to IF signals, the data acquisition part transmits the IF signals to PC using USB device. The PC part rejects the interferences with a filter and then it does navigation with GPS software receiver. The RF/IF part and data acquisition part had been validated with signal spectrum, and the PC part had been validated with the navigation results of GPS receiver. Finally, the entire platform including interference rejection filter has been confirmed with the navigation results in case that the GPS signals and interference entered this platform. As a result, the GPS receiver operated well against interference with 45dB JSR.

Analysis of Downlink Wideband DS-CDMA Systems with Smart Antenna for Different Spreading Bandwidths in Wideband Multipath Channel

  • Jeon Jun-Soo;Kim Cheol-Sung
    • Journal of electromagnetic engineering and science
    • /
    • 제4권4호
    • /
    • pp.183-189
    • /
    • 2004
  • In this paper, the Eigen-RAKE receiver in wideband direct sequence code-division multiple access(DS-CDMA) systems with downlink smart antenna is analyzed for different spreading bandwidths(1.25 MHz, 5 MHz, 10 MHz) and different channel environments(macro, micro). The realistic spatio-temporal wideband multipath channel is assumed, one of which is standardized multiple-input single-output(MISO) radio channel model for WCDMA link-level simulations proposed by $3^{rd}$ generation partnership project(3GPP) contributions. We assumed spatial scattering phenomenon in which many unresolvable path signals within a limited range of spatial angle simultaneously contribute to the signals received at the receiver. Several multipaths within one chip are distinguished into each one and the first multipath components are selected as the desired signal and the others are considered self-interference. Downlink DS-CDMA system with eigenbeamformer using wider bandwidth present better performance than that using narrow bandwidth system by employing Eigen-RAKE receiver of many number of branches. It is shown that the downlink eigenbeamformer is more effective in typical urban macro cellular environments when using Eigen-RAKE receiver.

적응형 전송속도를 갖는 Ku-대역 모노펄스 수신기 설계 (Monopulse Receiver Design with Adaptive Transmission Speed on Ku-Band)

  • 정병구;이대홍;주태환
    • 한국전자파학회논문지
    • /
    • 제29권7호
    • /
    • pp.500-507
    • /
    • 2018
  • 본 논문에서는 유 무인항공기 추적 등에 사용이 가능하며, 전송속도가 최대 274 Mbps에서도 추적이 가능한 3채널 RF 모노펄스 수신기에 대해 설계하였다. 통신용 신호를 이용한 모노펄스 수신기는 Ku-대역으로 설계되었으며, 하향 변환모듈, 신호 처리 모듈로 구성된다. 제안된 RF 모노펄스 수신기의 성능을 만족시키기 위해 전송속도에 따른 전송속도별 수신감도의 신호처리 기능이 구현되었고, 이를 위해 다양한 대역폭의 신호 수신 및 상호 주파수 간섭을 최소화하기 위하여 2종의 RF 필터로 구성된 수신기 구조를 적용하였다. 시스템 요구사항의 만족 여부를 확인하기 위해 AWR 시뮬레이션 툴을 이용하였다.

저가형 수신기를 이용한 실시간 GNSS 자세결정 시스템 설계 및 성능 평가 (Design and Evaluation of Real-time GNSS Attitude Determination Systems using Low Cost Receivers)

  • 채정근;이동선;강인숙;박찬식
    • 전기학회논문지
    • /
    • 제63권9호
    • /
    • pp.1259-1265
    • /
    • 2014
  • In this paper, the real-time attitude determination based Matlab using low-cost receivers was designed and evaluated. The GNSS attitude determination system was implemented to operation in real-time by TimerCallback in MATLAB. The TTM(Transmission Time Misalignment) of U-blox receiver was confirmed through zero baseline tests and this problem was revised. The computed attitude by the high-cost NovAtel receiver was compared to the computed attitude by the low-cost U-blox receiver. As a result of this, the performance of attitude determination systems by low-cost receiver was confirmed. To determine baseline, LAMBDA and BC-LAMBDA for integer ambiguities search methods were used. To confirm suitable integer ambiguity search method in real-time attitude determination algorithm, determined baselines by two methods were compared, and it was confirmed that BC-LAMBDA is more suitable. As a result of this, the operation of real-time attitude determination system was confirmed using 3 low-cost receivers.