• Title/Summary/Keyword: Receiver Complexity

Search Result 314, Processing Time 0.024 seconds

Implementation of an Automatic Test Data Generating Tool for Digital TV Software (디지털 TV 소프트웨어를 위한 테스트 데이터 자동 생성기의 구현)

  • Gwak, Tae-Hee;Choi, Byoung-Ju
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.5
    • /
    • pp.551-562
    • /
    • 2002
  • Digital TV software, receiver system for digital broadcasting, processes huge MPEG-2 TS formatted data that has variable hierarchy. Because of complexity and enormity of MPEG-2 TS, it is difficult for user to generate test data manually. Generating of test data is not only expensive and time consuming but also requires expert knowledge of MPEG-2 standard. In this paper, we implemented the tool that generates the MPEG-2 TS formatted test data for Digital TV software. Using this tool, user ran get reliable test data without extensive knowledge of MPEG-2 standard. Also, database mechanism that our tool based on supports variable hierarchy of MPEG-2 TS.

Joint Time Delay and Angle Estimation Using the Matrix Pencil Method Based on Information Reconstruction Vector

  • Li, Haiwen;Ren, Xiukun;Bai, Ting;Zhang, Long
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5860-5876
    • /
    • 2018
  • A single snapshot data can only provide limited amount of information so that the rank of covariance matrix is not full, which is not adopted to complete the parameter estimation directly using the traditional super-resolution method. Aiming at solving the problem, a joint time delay and angle estimation using matrix pencil method based on information reconstruction vector for orthogonal frequency division multiplexing (OFDM) signal is proposed. Firstly, according to the channel frequency response vector of each array element, the algorithm reconstructs the vector data with delay and angle parameter information from both frequency and space dimensions. Then the enhanced data matrix for the extended array element is constructed, and the parameter vector of time delay and angle is estimated by the two-dimensional matrix pencil (2D MP) algorithm. Finally, the joint estimation of two-dimensional parameters is accomplished by the parameter pairing. The algorithm does not need a pseudo-spectral peak search, and the location of the target can be determined only by a single receiver, which can reduce the overhead of the positioning system. The theoretical analysis and simulation results show that the estimation accuracy of the proposed method in a single snapshot and low signal-to-noise ratio environment is much higher than that of Root Multiple Signal Classification algorithm (Root-MUSIC), and this method also achieves the higher estimation performance and efficiency with lower complexity cost compared to the one-dimensional matrix pencil algorithm.

Low Complexity Linear Receiver Implementation of SOQPSK-TG Signal Using the Cross-correlated Trellis-Coded Quadrature Modulation(XTCQM) Technique (SOQPSK-TG 신호의 교차상관 격자부호화 직교변조(XTCQM) 기법을 사용한 저복잡도 선형 수신기 구현)

  • Kim, KyunHoi;Eun, Changsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.3
    • /
    • pp.193-201
    • /
    • 2022
  • SOQPSK-TG is a modulated signal for aircraft telemetry with excellent frequency efficiency and power efficiency. In this paper, the phase waveform of the partial response SOQPSK-TG modulation is linearly approximated and modeled as a full response double duobinary SOQPSK (SOQPSK-DD) signal. And using the XTCQM method and the Laurent decomposition method, the SOQPSK-DD signal was approximated as OQPSK having linear pulse waveforms, and the results of the two methods were proved to be the same. In addition, it was confirmed that the Laurent decomposition waveform of the SOQPSK-DD signal approximates the Laurent decomposition waveform of the original SOQPSK-TG signal. And it was shown that the decision feedback IQ-detector, which applied the Laurent decomposition waveform of SOQPSK-DD to the detection filter, exhibits almost the same performance even with a simpler waveform than before.

Linear prediction analysis-based method for detecting snapping shrimp noise (선형 예측 분석 기반의 딱총 새우 잡음 검출 기법)

  • Jinuk Park;Jungpyo Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.3
    • /
    • pp.262-269
    • /
    • 2023
  • In this paper, we propose a Linear Prediction (LP) analysis-based feature for detecting Snapping Shrimp (SS) Noise (SSN) in underwater acoustic data. SS is a species that creates high amplitude signals in shallow, warm waters, and its frequent and loud sound is a major source of noise. The proposed feature takes advantage of the characteristic of SSN, which is sudden and rapidly disappearing, by using LP analysis to detect the exact noise interval and reduce the effects of SSN. The error between the predicted and measured value is large and results in effective SSN detection. To further improve performance, a constant false alarm rate detector is incorporated into the proposed feature. Our evaluation shows that the proposed methods outperform the state-of-the-art MultiLayer-Wavelet Packet Decomposition (ML-WPD) in terms of receiver operating characteristic curve and Area Under the Curve (AUC), with the LP analysis-based feature achieving a higher AUC by 0.12 on average and lower computational complexity.

Deisgn of adaptive array antenna for tracking the source of maximum power and its application to CDMA mobile communication (최대 고유치 문제의 해를 이용한 적응 안테나 어레이와 CDMA 이동통신에의 응용)

  • 오정호;윤동운;최승원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.11
    • /
    • pp.2594-2603
    • /
    • 1997
  • A novel method of adaptive beam forming is presented in this paper. The proposed technique provides for a suboptimal beam pattern that increases the Signal to Noise/Interference Ratio (SNR/SIR), thus, eventually increases the capacity of the communication channel, under an assumption that the desired signal is dominant compared to each component of interferences at the receiver, which is precoditionally achieved in Code Division Multiple Access (CDMA) mobile communications by the chip correlator. The main advantages of the new technique are:(1)The procedure requires neither reference signals nor training period, (2)The signal interchoerency does not affect the performance or complexity of the entire procedure, (3)The number of antennas does not have to be greater than that of the signals of distinct arrival angles, (4)The entire procedure is iterative such that a new suboptimal beam pattern be generated upon the arrival of each new data of which the arrival angle keeps changing due tot he mobility of the signal source, (5)The total amount of computation is tremendously reduced compared to that of most conventional beam forming techniques such that the suboptimal beam pattern be produced at vevery snapshot on a real-time basis. The total computational load for generating a new set of weitht including the update of an N-by-N(N is the number of antenna elements) autocovariance matrix is $0(3N^2 + 12N)$. It can further be reduced down to O(11N) by approximating the matrix with the instantaneous signal vector.

  • PDF

Design and Performance Analysis of the Efficient Equalization Method for OFDM system using QAM in multipath fading channel (다중경로 페이딩 채널에서 QAM을 사용하는 OFDM시스템의 효율적인 등화기법 설계 및 성능분석)

  • 남성식;백인기;조성호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6B
    • /
    • pp.1082-1091
    • /
    • 2000
  • In this paper, the efficient equalization method for OFDM(Orthogonal Frequency Division Multiflexing) System using the QAM(Quadrature Amplitude Modulation) in multipath fading channel is proposed in order to faster and more efficiently equalize the received signals that are sent over real channel. In generally, the one-tap linear equalizers have been used in the frequency-domain as the existing equalization method for OFDM system. In this technique, if characteristics of the channel are changed fast, the one-tap linear equalizers cannot compensate for the distortion due to time variant multipath channels. Therefore, in this paper, we use one-tap non-linear equalizers instead of using one-tap linear equalizers in the frequency-domain, and also use the linear equalizer in the time-domain to compensate the rapid performance reduction at the low SNR(Signal-to-Noise Ratio) that is the disadvantage of the non-linear equalizer. In the frequency-domain, when QAM signals, consisting of in-phase components and quadrature (out-phase) components, are sent over the complex channel, the only in-phase and quadrature components of signals distorted by the multipath fading are changed the same as signals distorted by the noise. So the cross components are canceled in the frequency-domain equalizer. The time-domain equalizer and the adaptive algorithm that has lower-error probability and fast convergence speed are applied to compensate for the error that is caused by canceling the cross components in the frequency-domain equalizer. In the time-domain, To compensate for the performance of frequency-domain equalizer the time-domain equalizes the distorted signals at a frame by using the Gold-code as a training sequence in the receiver after the Gold-codes are inserted into the guard signal in the transmitter. By using the proposed equalization method, we can achieve faster and more efficient equalization method that has the reduced computational complexity and improved performance.

  • PDF

Compensation of OFDM Signal Degraded by Phase Noise and IQ Imbalance (위상 잡음과 직교 불균형이 있는 OFDM 수신 신호의 보상)

  • Ryu, Sang-Burm;Kim, Sang-Kyun;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.9
    • /
    • pp.1028-1036
    • /
    • 2008
  • In the OFDM system, IQ imbalance problem happens at the RF front-end of transceiver, which degrades the BER(bit error rate) performance because it affects the constellation in the received signal. Also, phase noise is generated in the local oscillator of transceivers and it destroys the orthogonality between the subcarriers. Conventional PNS algorithm is effective for phase noise suppression, but it is not useful anymore when there are jointly IQ(In-phase and Quadrature) imbalance and phase noise. Therefore, in this paper, we analyze the effect of IQ imbalance and phase noise generated in the down-conversion of the receiver. Then, we estimate and compensate the IQ imbalance and phase noise at the same time. Compared with the conventional method that IQ imbalance after IFFT is estimated and compensated in front of FFT via the feedback, this proposed method extracts and compensates effect of IQ imbalance after FFT stage. In case IQ imbalance and phase noise exist at the same time, we can decrease complexity because it is needless to use elimination of IQ imbalance in time domain and training sequences and preambles. Also, this method shows that it reduces the ICI and CPE component using adaptive forgetting factor of MMSE after FFT.

System Design and Evaluation of Digital Retrodirective Array Antenna for High Speed Tracking Performance (고속 추적 특성을 위한 디지털 역지향성 배열 안테나 시스템 설계와 특성 평가)

  • Kim, So-Ra;Ryu, Heung-Gyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.8
    • /
    • pp.623-628
    • /
    • 2013
  • The retrodirective array antenna system is operated faster than existing techniques of beamforming due to its less complexity. Therefore, it is effective for beam tracking in the environment of fast vehicle. On the other hand, it also has difficulty in estimating AOA according to multipath environment or multiuser signals. To improve the certainty of estimating AOA), this article proposes hybrid digital retrodirective array antenna systme combined with MUSIC algorithm. In this paper, the digital retrodirective array antenna system is designed according to the number of antenna array by using only one digital PLL which finds angle of delayed phase. And we evaluate the performance of the digital retrodirective array antenna for the high speed tracking application. Performance is studied by simulink when the speed of mobile is 300km/h and the distance between transmitter and receiver is 100m and then we have to confirm the performance of the system in multi path environment. As a result, the mean of AOA (Angle Of Arrival) error is $4.2^{\circ}$ when SNR is 10dB and it is $1.3^{\circ}$ when SNR is 20dB. Consequently, the digital RDA shows very good performance for high speed tracking due to the simple calculation and realization.

Total Degradation Performance Evaluation of the Time- and Frequency-Domain Clipping in OFDM Systems (OFDM 시스템에서 시간 및 주파수 영역 클리핑의 Total Degradation 성능평가)

  • Han, Chang-Sik;Seo, Man-Jung;Im, Sung-Bin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.17-22
    • /
    • 2007
  • OFDM (Orthogonal Frequency Division Multiplexing) is a special case of multicarrier transmission, where a single data stream is transmitted over a number of lower-rate subcarrier. One of the main reasons to use OFDM is to increase robustness against frequency-selective fading or narrowband interference. Unfortunately, an OFDM signal consists of a number of independently modulated subcarriers, which can give a large PAPR (Peak-to-Average Power Ratio) when added up coherently. In this paper, we investigate the performance of a simple PAPR reduction scheme, which requires no change of a receiver structure or no additional information transmission. The approach we employed is clipping in the time and frequency domains. The time-domain clipping is carried out with a predetermined clipping level while the frequency-domain clipping is done within EVM (Error Vector Magnitude). This approach is suboptimal with lower computational complexity compared to the optimal method. This evaluation is carried out on the OFDM system with an nonlinear amplifier. The simulation results demonstrated that the PAPR reduction algorithm is one of ways to reduce the effects of the nonlinear distortion of an HPA (High Power Amplifier).

Blind Adaptive Equalization of Partial Response Channels (부분 응답 채널에서의 블라인드 적응 등화 기술에 관한 연구)

  • 이상경;이재천
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11A
    • /
    • pp.1827-1840
    • /
    • 2001
  • In digital data transmission/storage systems, the compensation for channel distortion is conducted normally using a training sequence that is known a priori to both the sender and receiver. The use of the training sequences results in inefficient utilization of channel bandwidth. Sometimes, it is also impossible to send training sequences such as in the burst-mode communication. As such, a great deal of attention has been given to the approach requiring no training sequences, which has been called the blind equalization technique. On the other hand, to utilize the limited bandwidth effectively, the concept of partial response (PR) signaling has widely been adopted in both the high-speed transmission and high-density recording/playback systems such as digital microwave, digital subscriber loops, hard disk drives, digital VCRs and digital versatile recordable disks and so on. This paper is concerned with blind adaptive equalization of partial response channels whose transfer function zeros are located on the unit circle, thereby causing some problems in performance. Specifically we study how the problems of blind channel equalization associated with the PR channels can be improved. In doing so, we first discuss the existing methods and then propose new structures for blind PR channel equalization. Our structures have been extensively tested by computer simulation and found out to be encouraging in performance. The results seem very promising as well in terms of the implementation complexity compared to the previous approach reported in literature.

  • PDF