• Title/Summary/Keyword: Received Signal Strength Measurement

Search Result 63, Processing Time 0.021 seconds

A Distance Estimation Algorithm Based on Multi-Code Ultrasonic Sensor and Received Signal Strength (다중 코드 초음파와 전파 신호 강도를 이용한 거리 측정)

  • Cho, Bong-Su;Kim, Phil-Soo;Moon, Woo-Sung;Baek, Kwang-Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.149-156
    • /
    • 2011
  • This paper reveals a distance estimation algorithm based on multi-code ultrasonic and wireless sensor network. For measuring the distances among the sensor nodes, each ultrasonic transmitter transmits multi-code ultrasonic signal simultaneously. Receivers use cross correlation method to separate the coded signals. The information of measured distances is broadcasted to each sensor node by wireless sensor network. The wireless sensor network measures the distance among the sensor nodes using the received signal strength of the broadcasting. The multi-code ultrasonic have a limitation of measurable distance. And the received signal strength is affected from an environment. This paper measures a distance using ultrasonic and a received signal strength in short range. These measured data are applied to the least square estimation algorithm. By the expansion of the fitting curve, a distance measurement in long range using the received signal strength is compensated. The coupled system reduce the error to an acceptable level.

Analysis of Absorption Loss by a Human Body in On-to-Off Body Communication at 2.45 GHz

  • Jeon, Jaesung;Lee, Sangwoo;Choi, Jaehoon;Kim, Sunwoo
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.2
    • /
    • pp.97-103
    • /
    • 2015
  • This paper investigates the effect of absorption loss by a human body to the received signal strength with respect to on-body transmitting antenna positions in on-to-off wireless body area networks. This investigation is based on measurement results obtained from experiments performed on human bodies (male and female) using planar inverted-F antennas in an anechoic chamber. The total absorption loss by the human body is also presented through the SEMCAD-X simulations. Our investigation showed that the received signal strength becomes lower when the transmitting antenna is mounted at a specific position where more absorption loss is experienced. The statistical analyses of on-to-off body channel characteristics based on the measurement results are presented.

Spatiotemporal Location Fingerprint Generation Using Extended Signal Propagation Model

  • Kim, Hee-Sung;Li, Binghao;Choi, Wan-Sik;Sung, Sang-Kyung;Lee, Hyung-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.789-796
    • /
    • 2012
  • Fingerprinting is a widely used positioning technology for received signal strength (RSS) based wireless local area network (WLAN) positioning system. Though spatial RSS variation is the key factor of the positioning technology, temporal RSS variation needs to be considered for more accuracy. To deal with the spatial and temporal RSS characteristics within a unified framework, this paper proposes an extended signal propagation mode (ESPM) and a fingerprint generation method. The proposed spatiotemporal fingerprint generation method consists of two algorithms running in parallel; Kalman filtering at several measurement-sampling locations and Kriging to generate location fingerprints at dense reference locations. The two different algorithms are connected by the extended signal propagation model which describes the spatial and temporal measurement characteristics in one frame. An experiment demonstrates that the proposed method provides an improved positioning accuracy.

Attack-Resistant Received Signal Strength based Compressive Sensing Wireless Localization

  • Yan, Jun;Yu, Kegen;Cao, Yangqin;Chen, Liang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4418-4437
    • /
    • 2017
  • In this paper a three-phase secure compressive sensing (CS) and received signal strength (RSS) based target localization approach is proposed to mitigate the effect of malicious node attack. RSS measurements are first arranged into a group of subsets where the same measurement can be included in multiple subsets. Intermediate target position estimates are then produced using individual subsets of RSS measurements and the CS technique. From the intermediate position estimates, the residual error vector and residual error square vector are formed. The least median of residual error square is utilized to define a verifier parameter. The selected residual error vector is utilized along with a threshold to determine whether a node or measurement is under attack. The final target positions are estimated by using only the attack-free measurements and the CS technique. Further, theoretical analysis is performed for parameter selection and computational complexity evaluation. Extensive simulation studies are carried out to demonstrate the advantage of the proposed CS-based secure localization approach over the existing algorithms.

Performance Analysis of Handover Trigger Based on Signal Strength Measurement (신호 강도 측정 기반 핸드오버 결정 방법의 성능 분석)

  • Park, Jae-Sung;Lim, Yu-Jin
    • The KIPS Transactions:PartC
    • /
    • v.14C no.7
    • /
    • pp.603-610
    • /
    • 2007
  • Effective handover decision is important for providing seamless services to mobile users. In this paper, we propose an analysis framework to evaluate the performance of handover decision based on received signal strength (RSS) measurements in terms of the late notification and false alarm probability. In our framework, we consider mobility of a mobile user, signaling delays for exchanging messages related to handover protocols, cell sizes and RSS measurement interval to stabilize RSS reading due to random measurement errors. By quantitatively scrutinizing the impact of each parameter on the late notification and false alarms, we suggest the research directions for effective handover decision mechanism that may provide fast and reliable handover.

RSSI-based Indoor Location Tracking System using Wireless Sensor Networks (무선 센서 네트워크를 이용한 RSSI 기반의 실내 위치 추적 시스템)

  • Jung, Kyung-Kwon;Park, Hyun-Sik;Choi, Woo-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.7
    • /
    • pp.67-73
    • /
    • 2008
  • This paper describes a system for location tracking wireless sensor nodes in an indoor environment. The sensor reading used for the location estimation is the received signal strength indication (RSSI) as given by an RF interface. By tagging users with a mobile node and deploying a number of reference nodes at fixed position in the room, the received signal strength indicator can be used to determine the position of tagged users. The system combines Euclidean distance technique with signal strength obtained by measurement driven log-normal path loss model of 2.4 GHz wireless channel. The experimental results demonstrated the ability of this system to estimate the location with a error less than 1.3m.

  • PDF

An RSS-Based Localization Scheme Using Direction Calibration and Reliability Factor Information for Wireless Sensor Networks

  • Tran-Xuan, Cong;Koo, In-Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.1
    • /
    • pp.45-61
    • /
    • 2010
  • In the communication channel, the received signal is affected by many factors that can cause errors. These effects mean that received signal strength (RSS) based methods incur more errors in measuring distance and consequently result in low precision in the location detection process. As one of the approaches to overcome these problems, we propose using direction calibration to improve the performance of the RSS-based method for distance measurement, and sequentially a weighted least squares (WLS) method using reliability factors in conjunction with a conventional RSS weighting matrix is proposed to solve an over-determined localization process. The proposed scheme focuses on the features of the RSS method to improve the performance, and these effects are proved by the simulation results.

Usage of RSSI in WAVE Handover (WAVE 핸드오버상에서 수신 신호 세기의 이용)

  • Cho, Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1449-1454
    • /
    • 2012
  • Received signal strength indicator (RSSI) represents the strength of the received signal at the front end of analog-to-digital convertor (ADC) input. RSSI value can be used for deciding the status of channel at the receiver. In this paper, the usage of RSSI in handover is studied using the practical measurement data. We first measure RSSI in 5.9GHz frequency band which is commonly used in wireless access in vehicular environments (WAVE) system. i.e., vehicular communications. Then, to implement a fast handover, the usability of RSSI data is analyzed based on the measured data. We also apply handover in practical highway environments.

Indoor Localization in Wireless Sensor Network using LVQ (LVQ를 이용한 무선 센서 네트워크의 실내 위치 인식)

  • Park, Jin-Woo;Jung, Kyung-Kwon;Eom, Ki-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1295-1302
    • /
    • 2010
  • This paper proposed indoor location recognition method based on RSSI(received signal strength indication) using the LVQ network. In order to verify the effectiveness of the proposed method, we performed experiments, and then compared to the conventional triangularity measurement method. In the experiments, we set up the system to the laboratory, divided the 40 section, and installed 6 nodes as a reference node. We obtained the log-normal path loss model of wireless channels, RSSI converted into the distance. The distance values used as the input of LVQ. To learn the LVQ network, we set the target values as section indices. In the experiments, we determined the optimal number of subclass, and confirmed that the success rate of training phase was 96%, test phase was 91%.

Ranging the Distance Between Wireless Sensor Nodes Using the Deviation Correction Method of Received Signal Strength (수신신호세기의 편차 보정법을 이용한 무선센서노드 간의 거리 추정)

  • Lee, Jin-Young;Kim, Jung-Gyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.2
    • /
    • pp.71-78
    • /
    • 2012
  • Based on the Zigbee-based wireless sensor network, I suggest the way to reduce errors between the short distance, improving the accuracy of the presumed distance by revising the deviation of RSSI(Received Signal Strength Indication) values is to estimate the distance using only the RF signal power without the additional hardware. In general, the graph measured by RSSI values shows the proximity values which are ideally reduced in proportion to the distance under the free outdoor space in which LOS(Line-Of-Sight) is guaranteed. However, if the result of the received RSSI values are each substituted to the formula, it can produce a larger margin of error and less accurate measurement since it is based upon the premise that this free space is not affected by reflected waves or obstacles caused by the ground and electronic jamming engendered by the environment. Therefore, the purpose of this study is to reduce the margin of errors between the distances and to measure the proximity values with the ideal type of graph by suggesting the way to revise the received RSSI values in the light of these reflected waves or obstacles and the electronic jamming. In conclusion, this study proves that errors are reduced by comparing the proposed deviation correction method to the revised RSSI value.