• Title/Summary/Keyword: Recall rate

Search Result 308, Processing Time 0.02 seconds

A Novel Network Anomaly Detection Method based on Data Balancing and Recursive Feature Addition

  • Liu, Xinqian;Ren, Jiadong;He, Haitao;Wang, Qian;Sun, Shengting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권7호
    • /
    • pp.3093-3115
    • /
    • 2020
  • Network anomaly detection system plays an essential role in detecting network anomaly and ensuring network security. Anomaly detection system based machine learning has become an increasingly popular solution. However, due to the unbalance and high-dimension characteristics of network traffic, the existing methods unable to achieve the excellent performance of high accuracy and low false alarm rate. To address this problem, a new network anomaly detection method based on data balancing and recursive feature addition is proposed. Firstly, data balancing algorithm based on improved KNN outlier detection is designed to select part respective data on each category. Combination optimization about parameters of improved KNN outlier detection is implemented by genetic algorithm. Next, recursive feature addition algorithm based on correlation analysis is proposed to select effective features, in which a cross contingency test is utilized to analyze correlation and obtain a features subset with a strong correlation. Then, random forests model is as the classification model to detection anomaly. Finally, the proposed algorithm is evaluated on benchmark datasets KDD Cup 1999 and UNSW_NB15. The result illustrates the proposed strategies enhance accuracy and recall, and decrease the false alarm rate. Compared with other algorithms, this algorithm still achieves significant effects, especially recall in the small category.

이어콘을 적용한 음성 메뉴의 사용성 평가에 관한 연구 (A Study on the Usability Evaluation of Earcon Applied to Voice Menu)

  • 임치환;이재인;이성수
    • 산업경영시스템학회지
    • /
    • 제28권4호
    • /
    • pp.55-62
    • /
    • 2005
  • This paper describes the experiment that investigated the possibility of design and evaluation of the usability of earcon applied to voice menu. The earcon has functions in providing navigational cue in the hierarchical menu, and also can be applied to voice menu for improving the recall rate and the response time. In this experiment, participants identified their location with the help of earcon applied to the voice menu with the various earcon parameters. In detail some participants listened to the good quality sound of voice menu using the structured earcon, and they recalled the location they heard. Other participants listened to the good quality sound of voice menu without earcon, and they recalled the location they heard in the same manner. And the response times were checked through their answers. On analyzing the results, we found the earcon applied to voice menu showed the increase of recalling rate from what they heard during experiment. That is the performance of task was better with earcon applied to voice menu than with voice menu without earcon. In the earcon applied to voice menu test, it showed the accuracy of 92.50%, but in voice menu without earcon test, people could only recall 66.25% among given questions. The response time was reduced from 4.98 sec to 3.85 sec. In addition, this experiment showed the 87.5% of participants preferred the earcon applied to voice menu.

대학생 중도탈락 예방을 위한 기계 학습 기반 추천 시스템 구현 방안 (Implementation of a Machine Learning-based Recommender System for Preventing the University Students' Dropout)

  • 정도헌
    • 한국융합학회논문지
    • /
    • 제12권10호
    • /
    • pp.37-43
    • /
    • 2021
  • 본 연구는 대학생의 중도탈락 패턴을 식별하는 효과적인 자동 분류 기법을 제안하고, 이를 바탕으로 중도탈락을 예방하기 위한 지능형 추천 시스템의 구현 방안을 제시하는 것을 목표로 한다. 이를 위해 1) 실제 대학생의 재학/제적 데이터를 기반으로 기계 학습의 성능을 향상시킬 수 있는 데이터 처리 방안을 제안하고, 2) 5종의 기계학습 알고리즘을 이용하여 성능 비교 실험을 실시하였다. 3) 실험 결과, 제안 기법이 베이스라인에 비해 모든 알고리즘에서 우수한 성능을 보여주었다. 제적생의 식별 정확률(precision)은 랜덤 포레스트(Random Forest)를 사용할 때 최대 95.6%, 제적생의 재현율(recall)은 나이브 베이즈(Naive Bayes)를 사용할 때 최대 80.0%로 측정되었다. 4) 마지막으로, 실험 결과를 바탕으로 중도탈락 가능성이 높은 학생을 우선 상담하는 추천 시스템의 활용 방안을 제시하였다. 교육 현안 문제를 해결하기 위해 IT 분야의 기술을 활용하는 융합 연구를 통해 합리적인 의사결정을 수행할 수 있음을 확인하였으며 향후 지속적인 연구를 통해 다양한 인공지능 기술을 적용하고자 한다.

콘크리트 교량 상태평가를 위한 딥러닝 기반 손상 탐지 프로토타입 개발 (Development of Deep Learning-Based Damage Detection Prototype for Concrete Bridge Condition Evaluation)

  • 남우석;정현준;박경한;김철민;김규선
    • 대한토목학회논문집
    • /
    • 제42권1호
    • /
    • pp.107-116
    • /
    • 2022
  • 최근 안전점검자가 접근성 문제로 점검이 어려운 교량 부재의 상태평가를 위해 영상분석 기반의 시설물 점검 기법연구가 활발히 진행 중이다. 본 논문은 교량을 대상으로 딥러닝 기반 영상정보에 대해서 상태평가 연구를 진행하였고 이에 대한 평가 프로그램(프로토타입)을 개발하였다. 딥러닝 기반 교량 손상탐지 프로토타입을 개발하기 위해 딥러닝 모델 중 손상 검출 및 정량화가 가능한 의미론적 분할 모델인 Mask-RCNN를 적용하였고 학습데이터 6,540장(오픈 데이터 포함)과 손상유형에 적합한 레이블링을 구성하였다. 모델링에 대한 성능검증한 결과, 콘크리트 균열, 박리/박락, 철근노출과 도장 박리에 대한 정밀도(precision)는 95.2 %, 재현율(recall)은 93.8 % 나타내었다. 또한, 교량 콘크리트 부재 손상율을 이용하여 콘크리트 균열 실 데이터를 2차 성능검증 하였다.

Heart Disease Prediction Using Decision Tree With Kaggle Dataset

  • Noh, Young-Dan;Cho, Kyu-Cheol
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권5호
    • /
    • pp.21-28
    • /
    • 2022
  • 심혈관질환은 심장질환과 혈관질환 등 순환기계통에 생기는 모든 질병을 통칭한다. 심혈관질환은 2019년 사망의 1/3을 차지하는 전 세계 사망의 주요 원인이며, 사망자는 계속 증가하고 있다. 이와 같은 질병을 인공지능을 활용해 환자의 데이터로 미리 예측이 가능하다면 질병을 조기에 발견해 치료할 수 있을 것이다. 본 연구에서는 심혈관질환 중 하나인 심장질환을 예측하는 모델들을 생성하였으며 Accuracy, Precision, Recall의 측정값을 지표로 하여 모델들의 성능을 비교한다. 또한 Decision Tree의 성능을 향상시키는 방법에 대해 기술한다. 본 연구에서는 macOS Big Sur환경에서 Jupyter Notebook으로 Python을 사용해 scikit-learn, Keras, TensorFlow 라이브러리를 이용하여 실험을 진행하였다. 연구에 사용된 모델은 Decision Tree, KNN(K-Nearest Neighbor), SVM(Support Vector Machine), DNN(Deep Neural Network)으로 총 4가지 모델을 생성하였다. 모델들의 성능 비교 결과 Decision Tree 성능이 가장 높은 것으로 나타났다. 본 연구에서는 노드의 특성배치를 변경하고 트리의 최대 깊이를 3으로 지정한 Decision Tree를 사용하였을 때 가장 성능이 높은 것으로 나타났으므로 노드의 특성 배치 변경과 트리의 최대 깊이를 설정한 Decision Tree를 사용하는 것을 권장한다.

수술 동영상에서의 인공지능을 사용한 출혈 검출 연구 (A Study on the Bleeding Detection Using Artificial Intelligence in Surgery Video)

  • 정시연;김영재;김광기
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권3호
    • /
    • pp.211-217
    • /
    • 2023
  • Recently, many studies have introduced artificial intelligence systems in the surgical process to reduce the incidence and mortality of complications in patients. Bleeding is a major cause of operative mortality and complications. However, there have been few studies conducted on detecting bleeding in surgical videos. To advance the development of deep learning models for detecting intraoperative hemorrhage, three models have been trained and compared; such as, YOLOv5, RetinaNet50, and RetinaNet101. We collected 1,016 bleeding images extracted from five surgical videos. The ground truths were labeled based on agreement from two specialists. To train and evaluate models, we divided the datasets into training data, validation data, and test data. For training, 812 images (80%) were selected from the dataset. Another 102 images (10%) were used for evaluation and the remaining 102 images (10%) were used as the evaluation data. The three main metrics used to evaluate performance are precision, recall, and false positive per image (FPPI). Based on the evaluation metrics, RetinaNet101 achieved the best detection results out of the three models (Precision rate of 0.99±0.01, Recall rate of 0.93±0.02, and FPPI of 0.01±0.01). The information on the bleeding detected in surgical videos can be quickly transmitted to the operating room, improving patient outcomes.

머신러닝 기반 대학생 중도탈락 예측 모델 구현 방안 (Implementing of a Machine Learning-based College Dropout Prediction Model)

  • 노윤정
    • 융합신호처리학회논문지
    • /
    • 제25권2호
    • /
    • pp.119-126
    • /
    • 2024
  • 본 연구는 대학생의 중도탈락에 영향을 주는 주요 패턴을 기계 학습하여 대학 중도탈락에 대한 조기 경보 시스템의 타당성을 평가하고 적극적으로 예방할 수 있는 시스템의 구현 방안을 제시하고자 한다. 이를 위해 한국교육개발원에서 실시한 한국교육종단연구 2005(Korean Educational Longitudinal Study, 2005)의 데이터를 사용하여 기계학습 기반의 5종의 알고리즘을 이용하여 성능 비교 실험을 실시하였다. 실험결과, 중도탈락 의도를 가진 학생의 식별 정확률(precosion)은 랜덤 포레스트(Random Forest)를 사용할 때 최대 94.0%, 중도탈락 의도를 가진 학생의 재현율(recall)은 Logistic Regression를 사용할 때 최대 77.0%로 측정되었다. 마지막으로 가장 높은 예측 모델을 바탕으로 중도탈락 가능성이 높은 학생을 상담 관리하며 특히, 특성별로 높은 중요도를 보이는 요인을 상담법 모델에 적용하고자 한다. 본 연구는 중도탈락이 대학과 개인에게 있어 큰 비용을 초래함과 대학생들이 직면한 진로 문제를 해결하기 위해 IT 기술을 활용한 모델을 구현하고자 한다.

2차 법률정보 전문데이터베이스에 있어서 통제어 색인시스템과 자연어 색인시스템의 검색효율 평가에 관한 연구 (A Study on the Indexing System Using a Controlled Vocabulary and Natural Language in the Secondary Legal Information Full-Text Databases : an Evaluation and Comparison of Retrieval Effectiveness)

  • 노정란
    • 한국문헌정보학회지
    • /
    • 제32권4호
    • /
    • pp.69-86
    • /
    • 1998
  • 본 연구는 2차 법률정보 전문 데이터베이스 구축을 위한 기초연구(권기원, 노정란, 1998, 한국문헌정보학회지, 32(3))에서 밝혀진 법률정보의 특성을 근거로 알고리즘을 개발하고 알고리즘에 의한 모형 통제어 데이터베이스를 구축하여 통제어 색인 시스템과 자연어 색인 시스템의 검색효율을 비교 평가한 것이다. 연구 결과 2차 법률 정보 전문 데이터베이스에서 통제어 색인 시스템은 재현을, 정확률, 자연어 시스템이 검색하지 못한 고유한 적합 문헌을 검색하는 능력에 있어서 자연어 색인시스템보다 높은 효율을 나타내었다. 또한 일반적으로 가중치를 부여하거나 접근점을 추가할 경우 데이터베이스의 정확률이나 재현율의 향상을 가져올 수 있다고 보고 있으나, 2차 법률정보 전문 데이터베이스에서는 법률정보라는 특정 지식 분야의 특성으로 인하여 가중치를 부여하거나 접근점을 추가한 경우에도 재현율과 정확률의 향상을 나타내지 않는다는 사실이 맞혀졌다. 그러므로 정보시스템 설계자는 시스템을 단순히 언어학적, 통계학적 방법으로 접근하기보다는 정보전문가와 주제전문가가 인식하고 있는 각 주제분야의 고유 지식을 시스템에 내장시키는 것이 필요하다고 할 수 있다.

  • PDF

시각 장애인을 위한 영상 기반 심층 합성곱 신경망을 이용한 화재 감지기 (Fire Detection using Deep Convolutional Neural Networks for Assisting People with Visual Impairments in an Emergency Situation)

  • 보라시 콩;원인수;권장우
    • 재활복지
    • /
    • 제21권3호
    • /
    • pp.129-146
    • /
    • 2017
  • 본 연구는 실내에서 화재 발생시 시각 장애인들을 지원하기 위한 영상 기반의 화재감지기를 제안한다. 건물 내에 화재가 발생하는 비상 상황 발생시 시각 장애인은 일반인보다 상황을 인지하는 것이 늦기 때문에 위험한 상황에 노출되기 쉽다. 기존의 연기 감지기와 같은 현재의 화재 감지 방법은 화재 발생시 발생하는 화학 센서 기반 기술을 사용함으로써 감지가 상대적으로 늦으며 화재가 확산된 후에 감지가 되는 등 낮은 신뢰성이 문제가 될 수 있다. 이를 보완하기 위해 영상 기반의 화재 감지 기술이 개발되었지만 낮은 정확도가 문제가 되어 실용화되지 못하였다. 최근 인공 지능을 위한 심층 학습 분야의 큰 발전으로 영상 내의 물체 인식률이 높아짐에 따라 관련 연구가 활발히 진행되고 있다. 따라서 본 연구에서는 보안 카메라 영상을 사용하여 화재를 감지할 수 있는 심층 학습 기반의 화재 감지기를 제안한다. 심층 학습 기반의 접근법은 영상에서 자동으로 특징을 학습할 수 있으므로 일반적으로 복잡한 상황에 대해서도 일반화가 가능하다. 본 논문에서는 화재감지 정확도와 속도 측면의 균형을 고려하여 두 개의 심층 합성곱 신경망 모델을 제안하였다. 실험을 통해 두 모델 모두 99%의 평균 정밀도로 화재를 감지할 수 있으며 첫 번째 모델은 초당 30장의 처리 속도와 76%의 정확도를 나타냈다. 두번째 모델은 초당 50장의 처리 속도와 61%의 정확도를 나타낸다. 또한 두 개의 모델의 메모리 사용량을 서로 비교하였으며 다양한 실제 화재 시나리오에서 테스트하여 신뢰할 수 있는 모델임을 증명하였다. 본 논문에 제안한 영상 기반 화재 감지기가 상용화된다면 상대적으로 실내 화재에 취약한 시각 장애인들의 안전에 도움이 될 것이다.

임프란트 지지 국소의치의 임상적 연구 (Clinical study of implant supported removable partial dentures)

  • 박원희
    • 대한치과의사협회지
    • /
    • 제47권4호
    • /
    • pp.184-190
    • /
    • 2009
  • OBJECTIVE The purpose of clinical study was to evaluate the survival of dental implants used in restoring patients with implant supported removable partial dentures (ISRPDs) of different configurations. MATERIALS AND METHODS The sample consisted of 20 consecutively treated partially edentulous patients, who, between 2003 and 2008, had a total of 84implants placed in different arch sites and who were treated with ISRPDs. The mean age was 57 years. Mean follow up time from delivery of ISRPDs was 3 years 2 months (range, 1 to 6 years). Osseointegration failure, postoperative complication of dental prosthesis, and the success rate of ISRPDs were retrospectively evaluated using clinical and radiographic examination. RESULT The overall implant survival rate was 100%. During follow up, the one clasp of removable partial denture was broken in 1 year11 months after prosthesis delivery. All patients were satisfied with their prosthesis. CONCLUSIONS Implant supported removable partial dentures could serve as favorable prognosis. Careful patient selection, with an appropriate maintenance and recall system, is recommended to obtain satisfactory results.

  • PDF