• Title/Summary/Keyword: Rebar Thickness

Search Result 68, Processing Time 0.018 seconds

Study on Flexural Strength of Wide Composite Beam for Long Span and Saving Story height (장스팬 및 층고저감형 와이드 복합보의 휨성능에 관한 연구)

  • Choi, Yun-Cheul;Park, Keum-Sung;Lee, Sang-Sup;Choi, Hyun-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.44-51
    • /
    • 2017
  • Recently, the parking in downtown area has caused severe problem due to the dramatic increase of possessing automobile in the country. A parking structure has been on the spotlight to solve the parking problem in downtown area. However, the overall height of parking structure is stipulated less than 8 m. Therefore, in this research, 'wide composite beam', which is possible for reducing story height and having long span, is developed and the flexural capacity of the wide composite beam is evaluated. Based on the result of the flexural test, the flexural strength of wide composite beam increased by 20% as the thickness of steel beam increased by 3 mm ($6mm{\rightarrow}9mm$) The shapes of rebar (whether it is triangle or rectangular shape) in the wide composite beam did not affect its flexural strength. The flexural strength of wide composite beam without rebar decreased by 10% compared to that of wide composite beam with rebar. In addition, the neutral axis moved upward as a load increased, but the neutral axis moved downward, when the load exceeded a certain level of load.

Fire Resistance Performance of High Strength Concrete Columns with Fireproof Gypsum Board (방화석고보드를 부착한 고강도 콘크리트 기둥의 내화성능)

  • Youm, Kwang-Soo;Jeon, Hyun-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.229-235
    • /
    • 2010
  • In this study, fire resistance performance of high strength concrete specimen with fireproof gypsum board was investigated for possible use in upgrading fire-resistant performance of the existing building and repair of fire damaged structures. Fire test of eight identical high strength concrete columns were carried out for 180 minutes in accordance with ISO-834. The temperature distributions in longitudinal reinforcement and concrete temperature at various depths were recorded. The fireproof performance of gypsum board and explosive spalling of concrete were observed. The specimens with 15 mm thick twoply fireproof gypsum board spalled after gypsum board crumbled regardless of fastening methods. However, when the thickness of fireproof gypsum board was more than 30 mm, it was possible to prevent the explosive spalling and control the rebar temperature. Although the effect of cover thickness could not be compared because the explosive spalling occurred, there seemed to be no difference in insulation efficiency.

Influence of Concrete Strength on Tension Stiffening (콘크리트강도가 인장증강에 미치는 영향에 관한 연구)

  • Yum, Hwan-Seok;Yun, Sung-Ho;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.1
    • /
    • pp.13-22
    • /
    • 2000
  • This paper describes the results obtained from 11 direct tension tests to explore the influence of concrete strength on tension stiffening behavior in reinforced concrete axial members. Three different concrete compressive strengths, 250, 650, and 900kgf/$\textrm{cm}^2$, were included as a main variable, while the ratio of cover thickness-to-rebar diameter was kept constant to be 2.62 to prevent from splitting cracking. As the results, it was appeared that, as higher concrete strength was used, less tension stiffening effect was resulted, and the residual deformation upon unloading was larger. In addition, the spacing between adjacent transverse cracks became smaller with higher concrete strength. The major cause for those results may be attributed to the fact that nonuniform bond stress concentration at both loaded ends and crack sections becomes severer as higher concrete is used, thereby local bond failure becomes more susceptible. From these findings, it would be said the increase in flexural stiffness resulting from using high-strength concrete will be much smaller than that predicted by the conventional knowledge. Finally, a factor accunting for concrete strength was introduced to take account for the effect of HSC on tension stiffening. This proposed equation predicts well the tension stiffening for the effect of HSC on tension stiffening. This proposed equation predicts well the tension stiffening behavior of these tests.

Evaluation of shield TBM segment acting load through monitoring data back analysis (계측 데이터 역해석을 통한 쉴드 TBM 터널 세그먼트의 작용하중 평가)

  • Lee, Gyu-Phil;Chang, Soo-Ho;Bae, Gyu-Jin;Choi, Soon-Wook;Ahn, Chang-Yoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.905-913
    • /
    • 2017
  • To design segment lining, loads such as self weight, vertical load, horizontal load, ground reaction, water pressure, backfill grouting pressure et al. have to be considered. Earth pressure and water pressure are the major factor to design segment lining such as concrete strength, segment thickness and amount of rebar et al. To analysis earth pressure and water pressure acting on segment lining, filed monitoring and back analysis are performed in this study.

Structural Behavior on Horizontal Connection for Hybrid Precast Concrete Panel (복합 프리캐스트 콘크리트 패널 수평접합부의 구조적 거동)

  • Lee, Sang-Sup;Park, Keum-Sung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.155-162
    • /
    • 2019
  • Hybrid precast concrete panel is a wall element that is able to quickly construct the core wall structure for moderate-rise modular buildings. Hybrid precast concrete panel has unique characteristics which is a pair of C-shaped steel beams combined at the top and bottom of a concrete wall, In this study, an improved anchorage detail for vertical rebar is proposed to ensure the lateral force resistance performance of hybrid precast concrete panel emulating monolithic concrete wall. Also, the structural performance of horizontal connection is investigated experimentally with the bolt spacing parameter. And the behavior of hybrid precast concrete panel with the improved detail is compared with the monolithic concrete wall tested in a previous study. Finally, the required thickness of C-shaped steel beam to eliminate or minimize the deformation in horizontal connection is calculated by prying action equation.

Evaluation of Flexural Performance of Reinforced Concrete Shear Walls According to Flexural Retrofit by Wall End Excavating (단부 파쇄형 휨 보강에 따른 철근콘크리트 전단벽 휨 성능 평가)

  • Cho, Ui-Jin;Kim, Su-Yong;Bae, Baek-Il;Choi, Chang-Sik
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.4
    • /
    • pp.123-133
    • /
    • 2020
  • The purpose of this study is to analyze the method of retrofitting flexural strength and the flexural performance of retrofitted shear walls. There are various ways to reinforce the flexural strength of reinforced concrete shear wall structural systems that have already been built, in the case of that, the external force is increased, and the internal force is insufficient. However, there are various problems, such as excessive flexural stiffness after reinforcement and increasing the thickness and length of the wall. We have developed a retrofit method to solve these problems. The wall end is excavated to place the required vertical rebars, and concrete is poured after placing rebars. This is the same concept as creating wall end boundary elements later on. We also studied the anchorage method of reinforcement and the interaction method between the retrofitting end and the existing wall. The flexural test results for the reinforced concrete shear wall using the studied retrofit method can be predicted according to the sectional analysis and FEM analysis, and there are differences in the plastic hinge length, crack propagation, stiffness degradation and energy dissipation due to the bending depending on the vertical rebar ratio of wall end.

Different strengthening designs and material properties on bending behavior of externally reinforced concrete slab

  • Najafi, Saeed;Borzoo, Shahin
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.3
    • /
    • pp.271-287
    • /
    • 2022
  • This study investigates the bending behavior of a composite concrete slab roof with different methods of externally strengthing using steel plates and carbon fiber reinforced polymer (CFRP) strips. First, the concrete slab model which was reinforced with CFRP strips on the bottom surface of it is validated using experimental data, and then, using numerical modeling, 7 different models of square-shaped composite slab roofs are developed in ABAQUS software using the finite element modeling. Developed models include steel rebar reinforced concrete slab with variable thickness of CFRP and steel plates. Considering the control sample which has no external reinforcement, a set of 8 different reinforcement states has been investigated. Each of these 8 states is examined with 6 different uncertainties in terms of the properties of the materials in the construction of concrete slabs, which make 48 numerical models. In all models loading process is continued until complete failure occurs. The results from numerical investigations showed using the steel plates as an executive method for strengthening, the bending capacity of reinforced concrete slabs is increased in the ultimate bearing capacity of the slab by about 1.69 to 2.48 times. Also using CFRP strips, the increases in ultimate bearing capacity of the slab were about 1.61 to 2.36 times in different models with different material uncertainties.

Tensile capacity of mortar-filled rectangular tube with various connection details

  • Kim, Chul-Goo;Kang, Su-Min;Eom, Tae-Sung;Baek, Jang-Woon
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.339-351
    • /
    • 2022
  • A mortar-filled rectangular hollow structural section (RHS) can increase a structural section property as well as a compressive buckling capacity of a RHS member. In this study, the tensile performance of newly developed mortar-filled RHS members was experimentally evaluated with various connection details. The major test parameters were the type of end connections, the thickness of cap plates and shear plates, the use of stud bolts, and penetrating bars. The test results showed that the welded T-end connection experienced a brittle weld fracture at the welded connection, whereas the tensile performance of the T-end connection was improved by additional stud bolts inserted into the mortar within the RHS tube. For the end connection using shear plates and penetrating stud bolts, ductile behavior of the RHS tube was achieved after yielding. The penetrating bars increased load carrying capacity of the RHS. Based on the analysis of the load transfer mechanism, the current design code and test results were compared to evaluate the tensile capacity of the RHS tube according to the connection details. Design considerations for the connections of the mortar-filled RHS tubes were also recommended.

Performance Evaluation of Scale-down Concrete Filled FRP Columns (축소모형실험을 통한 콘크리트 충전 FRP 합성교각의 성능 평가)

  • Youm, Kwang-Soo;Lee, Seung-Hwe;Lee, Young-Ho;Song, Jae-Joon;Hwang, Yoon-Koog
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.135-144
    • /
    • 2009
  • The present paper represents experimental studies on the performance of concrete filled FRP columns. Eight scale-down specimens were conducted by quasi-static cyclic loading test. FRP thickness, concrete strength, horizontal rebar ratio, and diameter were selected as test parameters. The capacities of ductility for cyclic loading was evaluated and the damping ratio and failure mode from the stiffness reduction of each test specimen were compared.

Evaluation Study of Blast Resistance and Structural Factors in the Explosive Simple Storage by Numerical Analysis (수치해석을 통한 화약류 간이저장소의 방폭성 및 구조인자 평가연구)

  • Jung, Seung-Won;Kim, Jung-Gyu;Kim, Jun-Ha;Kim, Nam-Soo;Kim, Jong-Gwan
    • Tunnel and Underground Space
    • /
    • v.32 no.2
    • /
    • pp.160-172
    • /
    • 2022
  • The design regulations for simple explosive storage in Korea only stipulate standards for the materials and thickness of the wall of the structure because the amount of explosives that can be stored is small. There is concern about secondary damage during an internal explosion in a simple storage facility, and it is necessary to reexamine the current standards. The numerical analysis for the TNT 15 kg explosion inside the simple storage was carried out by setting the factors using the robust experimental design method. The displacement of the structure generated under the same time condition was analyzed, and the contribution was evaluated. The contribution of concrete thickness was the highest, and the contribution of concrete strength and rebar arrangement was lower than that of concrete thickness. The reinforcement diameter contributed extremely little to the displacement. The structural standards of the simple storage that are currently applied are insufficient on blast resistance, and it is necessary to present new design standards. Therefore, the design factor to be applied later analysis and actual experiments were taken into consideration. For the design variables, the thickness of the concrete was 15 cm considering the displacement, the concrete strength was selected as general concrete considering the inlet discharge pressure, the factor with the lowest average displacement was selected for the reinforcement arrangement and the diameter of the reinforcement, the factor with the smallest level was selected in consideration of economic feasibility because the difference in displacement was low.