• 제목/요약/키워드: Rebar Quantities

검색결과 13건 처리시간 0.014초

감쇠시스템을 적용한 라멘조 아파트의 내진성능평가 (Seismic Performance of the Framed Apartment Building Structure with Damping System)

  • 천영수;이범식;박지영
    • 토지주택연구
    • /
    • 제8권3호
    • /
    • pp.181-187
    • /
    • 2017
  • To proactively respond to internal and external changes such as the recent demographic change and rising demand for diversified housing types, this study investigated the framed-structure free plan public house model proposed by the LH to look at the seismic performance of framed-structure apartment according to damper system use through non-linear analysis. The effectiveness thereof was also examined in terms of performance and economy. As a result, the proposed damper system application method to framed-structure free plan public house model was found to meet the performance requirements of the present earthquake-resistant design (KBC2016) and effective to apply to designs. The max response displacement and max response acceleration were compared based on the nonlinear analysis. As a result, the building with damper system showed better earthquake resistance performance than earthquake-resistant structure thanks to the damper system, although the base shear of earthquake-resistant system was reduced by 20% in design. The damper system is expected to help reduce building damage while ensuring excellent earthquake resistance performance. In addition, the framework quantities of earthquake-resistant structure and structure with damping system were compared. As a result, columns were found to reduce concrete amount by about 3.9% and rebar, by about 7.3%. Walls showed about 12.6% reduction in concrete and about 10.7% in rebar. In terms of cost, framework construction cost including formwork and foundation expenses was expected to drop by about 5~6%.

건물 골조수량 산출 시 BIM모델 기반 수량과 2D도면 기반 수량 차이 요인 분석 (Difference Factors Analysis of between Quantity Take-off Using BIM Model and Using 2D Drawings in Reinforced Concrete Building Frame)

  • 김광희
    • 한국건축시공학회지
    • /
    • 제23권5호
    • /
    • pp.651-662
    • /
    • 2023
  • 최근에 BIM을 여러 건설관리 활동에 활용하는 연구가 활발히 진행되고 있으며, 3D모델 기반 견적은 3D모델의 속성 정보를 사용하여 자동으로 수행할 수 있다는 장점이 있어 이에 대한 관심이 증대되고 있다. 따라서 본 연구에서 한 건축물을 2D 도면 기반으로 수량을 산출하는 소프트웨어와 Revit 소프트웨어로 생성된 3D 모델에서 추출한 수량의 차이를 비교하고 그 원인을 알아보고자 하였다. 두 가지 방법의 산출한 수량의 차이는 거푸집이 가장 크고, 다음으로 철근과 콘크리트 수량 순으로 작았다. 이러한 차이가 발생하는 이유는 3D모델에서 수량 추출이 수량산출기준에 적합하지 않은 부분이 있고, 특히 거푸집의 경우 필요한 부분의 수량만 분리해 내는데 어려움이 있었다. 또한 철근수량은 부재별로 분리가 되지 않아 정확한 수량 비교와 차이 원인을 밝히는 것이 불가능하였다. 따라서 3D모델에서 수량산출에 필요한 수치정보만 가져오고 별도의 계산식을 적용하는 응용소프트웨어를 사용하는 것이 가장 합리적일 것으로 사료된다.

3층 철근콘크리트 전단벽 구조물의 지진응답해석 (Earthquake Response Analysis for Three-Story Building with Reinforced Concrete Shear Walls)

  • 이인규;이은행;김재민
    • 한국지진공학회논문집
    • /
    • 제25권3호
    • /
    • pp.103-110
    • /
    • 2021
  • A shake table test is conducted for the three-story reinforced concrete building structure using 0.28 g, 0.5 g, 0.75 g, and 1.0 g of seismic input motions based on the Gyeongju earthquake. Computational efforts are made in parallel to explore the mechanical details in the structure. For engineering practice, the elastic modulus of concrete and rebar in the dynamic analysis is reduced to 38% and 50%, respectively, to calibrate the structure's natural frequencies. The engineering approach to the reduced modulus of elasticity is believed to be due to the inability to specify the flexibility of the actual boundary conditions. This aspect may lead to disadvantages of nonlinear dynamic analysis that can distort local stress and strain relationships. The initial elastic modulus can be applied directly without the so-called engineering adjustment with infinite element models with spring and spring-dashpot boundary conditions. This has the advantage of imposing the system flexibility of the structure on the sub-boundary conditions of springs and damping devices to control its sensitivity in a serial arrangement. This can reflect the flexibility of realistic boundary conditions and the effects of system damping (such as the gap between a concrete footing and shake table, loosening of steel anchors, etc.) in scalar quantities. However, these spring and dashpot coefficients can only be coordinated based on experimental results, making it challenging to select the coefficients in-prior to perform an experimental test.