• 제목/요약/키워드: Reax-FF

검색결과 7건 처리시간 0.031초

Introduction to Molecular Dynamic Simulation Employing a Reactive Force Field (ReaxFF) for Simulating Chemical Reactions of SiHx Radicals on Si Surfaces

  • 한상수
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.93-93
    • /
    • 2010
  • In this talk, I will introduce a reactive force field (ReaxFF) molecular dynamics (MD) simulation. In contrast to common MD simulations with empirical FFs, we can predict chemical reactions (bond breaking and formation) in large scale systems with the ReaxFF simulation where all of the ReaxFF parameters are from quantum mechanical calculations such as density functional theory to provide high accuracy. Accordingly, the ReaxFF simulation provides both accuracy of quantum mechanical calculations and description of large scale systems of atomistic simulations at the same time. Here, I will first discuss a theory in the ReaxFF including the differences from other empirical FFs, and then show several applications for studying chemical reactions of SiHx radicals on Si surfaces, which is an important issue in Si process.

  • PDF

ReaxFF and Density Functional Theory Studies of Structural and Electronic Properties of Copper Oxide Clusters

  • Baek, Joo-Hyeon;Bae, Gyun-Tack
    • 대한화학회지
    • /
    • 제64권2호
    • /
    • pp.61-66
    • /
    • 2020
  • In this study, we investigate the structural and electronic properties of copper oxide clusters, CunOn (n = 9 - 15). To find the lowest energy structures of copper oxide clusters, we use ReaxFF and density functional theory calculations. We calculate many initial copper oxide clusters using ReaxFF quickly. Then we calculate the lowest energy structures of copper oxide clusters using B3LYP/LANL2DZ model chemistry. We examine the atomization energies per atom, average bond angles, Bader charges, ionization potentials, and electronic affinities of copper oxide clusters. In addition, the second difference in energies is investigated for relative energies of copper oxide clusters.

Atomistic Investigation of Lithiation Behaviors in Silicon Nanowires: Reactive Molecular Dynamics Simulation

  • 정현;주재용;조준형;이광렬;한상수
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.160.2-160.2
    • /
    • 2014
  • Recently silicon has attracted intense interest as a promising anode material of lithium-ion batteries due to its extremely high capacity of 4200 mA/g (for Li4.2Si) that is much higher than 372 mAh/g (for LiC6) of graphite. However, it seriously suffers from large volume change (even up to 300%) of the electrode upon lithiation, leading to its pulverization or mechanical failure during lithiation/delithiation processes and the rapid capacity fading. To overcome this problem, Si nanowires have been considered. Use of such Si nanowires provides their facile relaxation during lithiation/delithiation without mechanical breaking. To design better Si electrodes, a study to unveil atomic-scale mechanisms involving the volume expansion and the phase transformation upon lithiation is critical. In order to investigate the lithiation mechanism in Si nanowires, we have developed a reactive force field (ReaxFF) for Si-Li systems based on density functional theory calculations. The ReaxFF method provides a highly transferable simulation method for atomistic scale simulation on chemical reactions at the nanosecond and nanometer scale. Molecular dynamics (MD) simulations with the ReaxFF reproduces well experimental anisotropic volume expansion of Si nanowires during lithiation and diffusion behaviors of lithium atoms, indicating that it would be definitely helpful to investigate lithiation mechanism of Si electrodes and then design new Si electrodes.

  • PDF

Atomic oxygen에 의한 고분자 기지 산화 시뮬레이션 및 온도 효과의 정량화 (Erosion Simulations and Quantification of the Temperature Effect by Atomic Oxygen on Polymer Matrix)

  • 정지원;안종경;권승환;윤군진
    • Composites Research
    • /
    • 제37권5호
    • /
    • pp.416-421
    • /
    • 2024
  • 지구 저궤도 환경(400~700 km)에서 운용되는 위성체는 극심한 열 사이클, 자외선, 원자 상태로 존재하는 산소와의 충돌(AO) 등에 의해 지속적으로 손상을 입는다. 그 중 특히, AO와의 충돌은 고분자 기지 소재를 산화, 침식시켜 표면의 질량이 감소되고, 물성을 손상시키는 결과를 초래한다. 따라서 이러한 효과를 분석하기 위해 Reax-FF 분자동역학 시뮬레이션을 통해 분석하였다. 기존에 이루어지던 NVE 해석에서 보여진 정성적인 재료 간 AO 질량 감소율 연구에서 벗어나 NVT 해석을 활용하여 실제 위성체 운용 온도인 (200 K~400 K)에서의 온도에 따른 침식 수율 관계를 정량화하였으며, 표면에서 발생하는 반응 패턴의 변화와 고분자 상 변이에 의한 효과를 분석하였다.

Initial oxidation process on viinal Si(001) surface: ReaxFF based on molecular dynamics simulation

  • 윤경한;이응관;최희채;황유빈;윤근섭;김병현;정용재
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.300-300
    • /
    • 2011
  • Si oxidation is a key process in developing silicon devices, such as highly integrated metal-oxide-semiconductor (MOS) transistors and antireflection-coating (ARC) on solar cell substrate. Many experimental and theoritical studies have been carried out for elucidating oxidation processes and adsorption structure using ab initio total energy and electronic structure calcultaions. However, the initial oxidation processes at step edge on vicinal Si surface have not been studied using the ReaxFF reactive force field. In this work, strucutural change, charge distribution of oxidized Si throughout the depth from Si surface were observed during oxidation processes on vicinal Si(001) surface inclined by $10.5^{\circ}$ of miscut angle toward [100]. Adsorption energys of step edge and flat terrace were calculated to compare the oxidation reaction at step edge and flat terrace on Si surface.

  • PDF

분자동역학을 이용한 그래파이트 표면에서의 화학적 삭마현상에 관한 분자 수준의 이해 (Molecular Level Understanding of Chemical Erosion on Graphite Surface using Molecular Dynamics Simulations)

  • ;박경락;;양희성;박재현;하동성
    • 한국추진공학회지
    • /
    • 제19권6호
    • /
    • pp.54-63
    • /
    • 2015
  • 본 연구에서는 고온/고압의 연소가스에 의해 야기되는 노즐목 삭마현상의 분자수준 메커니즘을 분자동역학 시뮬레이션을 이용하여 관찰한다. 노즐목은 두 개의 그래핀으로 구성된 그래파이트로 모델링하고 분자동역학 시뮬레이션은 충분한 속도를 가지고 그래파이트에 충돌하는 $H_2O$ 분자와 $CO_2$ 분자가 지속적으로 생성되는 과정과 평형상태의 시뮬레이션으로 구성된다. 반응을 모사할 수 있는 ReaxFF 포텐셜을 사용하며, 충돌에 의해 야기되는 $H_2O$$CO_2$ 분자의 해리와 화학적 삭마와의 관계에 중점을 두고 관찰하고자 하며, 거시적인 관찰결과들과 비교하고자 한다.

MD simulation of structural change of polyethylene induced by high energy ion bombardment

  • Kim, Chan-Soo;Ahmed, Sk. Faruque;Moon, Myoung-Woon;Lee, Kwang-Ryeol
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.358-358
    • /
    • 2010
  • Ion beam bombardment at low energy forms nanosize patterns such as ripples, dots or wrinkles on the surface of polymers in ambient temperature and pressure. It has been known that the ion beam can alter the polymer surface that induces skins stiffer or the density higher by higher compressive stress or strain energies associated with chain scissions and crosslinks of the polymer. Atomic scale structure evolution in polymers is essential to understand a stress generation mechanism during the ion beam bombardment, which governs the nanoscale surface structure evolution. In this work, Molecular Dynamics (MD) simulations are employed to characterize the phenomenon occurred in bombardment between the ion beam and polymers that forms nanosize patterns. We investigate the structure evolution of Low Density Polyethylene (LDPE) at 300 K as the polymer is bombarded with Argon ions having various kinetic energies ranging from 100 eV to 1 KeV with 50 eV intervals having the fluence of $1.45\;{\times}\;1014 #/cm2$. These simulations use the Reactive Force Field (ReaxFF), which can mimic chemical covalent bonds and includes van der Waals potentials for describing the intermolecular interactions. The results show the details of the structural evolution of LDPE by the low energy Ar ion bombardment. Analyses through kinetic and potential energy, number of crosslinks and chain scissions, level of local densification and motions of atoms support that the residual strain energies on the surface is strongly associated with the number of crosslinks or scissored chains. Also, we could find an optimal Ar ion beam energy to make crosslinks well.

  • PDF