• Title/Summary/Keyword: Reassortant virus

Search Result 17, Processing Time 0.027 seconds

Application of a Reassortant Cucumber mosaic virus Vector for Gene Silencing in Tomato and Chili Pepper Plants

  • Hong, Jin-Sung;Rhee, Sun-Ju;Kim, Eun-Ji;Kim, Tae-Sung;Ryu, Ki-Hyun;Masuta, Chikara;Lee, Gung-Pyo
    • The Plant Pathology Journal
    • /
    • v.28 no.1
    • /
    • pp.81-86
    • /
    • 2012
  • We developed a reassortant RNA virus vector derived from $Cucumber$ $mosaic$ $virus$ (CMV), which has advantages of very wide host range and can efficiently induce gene silencing in a few model plants. Certain CMV isolates, however, show limited host ranges presumably because they naturally co-evolved with their own hosts. We used a reassortant comprised of two strains of CMV, Y-CMV and Gn-CMV, to broaden the host range and to develop a virus vector for virus-induced gene silencing (VIGS). Gn-CMV could infect chili pepper and tomato more efficiently than Y-CMV. Gn-CMV RNA1, 3 and Y-CMV RNA2-A1 vector were newly reconstructed, and the transcript mixture of RNA1 and 3 genomes of Gn-CMV and RNA2 genome of Y-CMV RNA2 containing portions of the endogenous phytoene desaturase (PDS) gene (CMV2A1::PDSs) was inoculated onto chili pepper (cv. Chung-yang), tomato (cvs. Bloody butcher, Tigerella, Silvery fir tree, and Czech bush) and $Nicotiana$ $benthamiana$. All the tested plants infected by the reassortant CMV vector showed typical photo-bleaching phenotypes and reduced expression levels of $PDS$ mRNA. These results suggest that the reassortant CMV vector would be a useful tool for the rapid induction of the RNA silencing of endogenous genes in chili pepper and tomato plants.

Identification of Reassortant Pandemic H1N1 Influenza Virus in Korean Pigs

  • Han, Jae-Yeon;Park, Sung-Jun;Kim, Hye-Kwon;Rho, Se-Mi;Nguyen, Giap Van;Song, Dae-Sub;Kang, Bo-Kyu;Moon, Hyung-Jun;Yeom, Min-Joo;Park, Bong-Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.5
    • /
    • pp.699-707
    • /
    • 2012
  • Since the 2009 pandemic human H1N1 influenza A virus emerged in April 2009, novel reassortant strains have been identified throughout the world. This paper describes the detection and isolation of reassortant strains associated with human pandemic influenza H1N1 and swine influenza H1N2 (SIV) viruses in swine populations in South Korea. Two influenza H1N2 reassortants were detected, and subtyped by PCR. The strains were isolated using Madin-Darby canine kidney (MDCK) cells, and genetically characterized by phylogenetic analysis for genetic diversity. They consisted of human, avian, and swine virus genes that were originated from the 2009 pandemic H1N1 virus and a neuraminidase (NA) gene from H1N2 SIV previously isolated in North America. This identification of reassortment events in swine farms raises concern that reassortant strains may continuously circulate within swine populations, calling for the further study and surveillance of pandemic H1N1 among swine.

Pathogenicity of new reassortant betanodaviruses to various juvenile fishes (새로운 betanodavirus 재편성체(reassortant)의 어류 치어에 대한 병원성 분석)

  • Kim, Young Chul;Jeong, Hyun Do
    • Journal of fish pathology
    • /
    • v.34 no.2
    • /
    • pp.133-140
    • /
    • 2021
  • With the recent isolation of a new betanodavirus in shellfish, Korean Shellfish Nervous Necrosis Virus (KSNNV), it has also been identified the reassortant KSNNV of two RNA segments, in which one segment is KSNNV genotype but the other one is known genotype. In this study, we confirmed that the ressortant KSNNVs obtained in previous screening study of our laboratory for betanodaviruses in shellfish were KS/RGNNV and RG/KSNNV type by performing two consecutive multiplex RT-PCR on each RNA1 and RNA2 segment (R1- and R2-discriminative multiplex two-step RT-PCR, respectively) to determine the genotype of each segment based on the size of amplicon. In the pathogenicity analysis, none of the reassortants induced specific external symptoms or mortality of VNN, but viruses of 2 × 104~105 copies/mg or more were detected at 14 days after injection (107 copies/fish) in brain tissues of 4 species except for crucian carp and common carp among the 6 species of juvenile fish used. In addition, the histopathological features of weak but distinct vacuole formation were also found in the brain of these infected fish, but no difference was found between the two reassortants KS/RGNNV-KG and RG/KSNNV-CM.

Generation and Segregation of Hantaviral RNA Genomic Diploid; Implications of Reassortant Generation Mechanism

  • Park Sun-Whan;Chung Dong-Hoon;Ahn Byung-Yoon;Lee Pyung-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.7
    • /
    • pp.1017-1025
    • /
    • 2006
  • Hantaviruses possess three RNA segments of negative sense. Co-infection of closely related hantaviruses may result in generation of a progeny virus with genomic polyploidy, containing a partial or complete set of genome originated from more than one parental virus. To characterize the formation of viral genomic polyploidy, cultured Vero-E6 cells were co-infected with two closely related hantaviruses, Hantaan and Maaji, and the progeny viruses examined. The genotype of plaque-purified viruses was analyzed by a virus-specific RT-PCR. Seventy percent (67/96) of the progeny virus was categorized as Hantaan and 3.3% (2/96) was classified as Maaji, whereas 20% (21/96) was considered polyploidy as they contained both types of the S RNA segment. Most of the polyploidy progeny viruses were unstable and gave rise to either one of the parental viruses or a reassortant after several rounds of plaque purification. No recombination between the heterologous pair of S RNA was observed for those polyploid viruses during three consecutive plaque-to-plaque passages. These data suggest that the viral polyploidy formation constitutes a primary mechanism underlying the generation of a newly emerged hantavirus.

Immunogenicity and protective effects of a novel reassortant influenza live virus, NC-22-8

  • Chung, Young-Mee;Kim, Seong-Woo;Chun, Hyung-Ok;Kim, Young-Gi;Kim, Hyun-Ah;Kim, Yeon-Hee;Ha, Suk-Hoon;Chae, Myeong-Yun;Park, Wan-Je
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.135.3-136
    • /
    • 2003
  • In the present study, type A influenza live virus, NC-22-8, which is a combination of a cold-adapted attenuated donor virus (HTCA-A101) and a wild type virus (A/New Caledonia/20/99), was constructed and the efficacy of this new virus was assessed by immunogenicity and protection tests in the mouse model. NC-22-8 (1'$10^7, 1'10^5, 1'10^3$ pfu/mouse) was intranasally administered to mice. Four weeks later, the titers of specific IgG and haemagglutinin inhibiton (HI) were measured from blood and the titer of secretary IgA (sIgA) was also detected from boncho alveolar lavage (BAL) and mucosal fluid. (omitted)

  • PDF

Genetic diversity of the H5N1 viruses in live bird markets, Indonesia

  • Dharmayanti, Ni Luh Putu Indi;Hewajuli, Dyah Ayu;Ratnawati, Atik;Hartawan, Risza
    • Journal of Veterinary Science
    • /
    • v.21 no.4
    • /
    • pp.56.1-56.13
    • /
    • 2020
  • Background: The live bird market (LBM) plays an important role in the dynamic evolution of the avian influenza H5N1 virus. Objectives: The main objective of this study was to monitor the genetic diversity of the H5N1 viruses in LBMs in Indonesia. Methods: Therefore, the disease surveillance was conducted in the area of Banten, West Java, Central Java, East Java, and Jakarta Province, Indonesia from 2014 to 2019. Subsequently, the genetic characterization of the H5N1 viruses was performed by sequencing all 8 segments of the viral genome. Results: As a result, the H5N1 viruses were detected in most of LBMs in both bird' cloacal and environmental samples, in which about 35% of all samples were positive for influenza A and, subsequently, about 52% of these samples were positive for H5 subtyping. Based on the genetic analyses of 14 viruses isolated from LBMs, genetic diversities of the H5N1 viruses were identified including clades 2.1.3 and 2.3.2 as typical predominant groups as well as reassortant viruses between these 2 clades. Conclusions: As a consequence, zoonotic transmission to humans in the market could be occurred from the exposure of infected birds and/or contaminated environments. Moreover, new virus variants could emerge from the LBM environment. Therefore, improving pandemic preparedness raised great concerns related to the zoonotic aspect of new influenza variants because of its high adaptivity and efficiency for human infection.

Genetic Analysis of H7N7 Avian Influenza Virus Isolated From Waterfowl in South Korea in 2016 (2016년 한국 야생조류에서 분리한 H7N7 조류인플루엔자 바이러스 유전자 분석)

  • Dires, Berihun;Seo, Sang Heui
    • Journal of Life Science
    • /
    • v.28 no.8
    • /
    • pp.962-968
    • /
    • 2018
  • Type A influenza virus is circulating in wild birds and can infect wide ranges of hosts such as humans, pigs, domestic birds, and other mammals. Many subtypes of avian influenza viruses are circulating in aquatic birds. Most avian influenza viruses found in aquatic birds are low pathogenic avian influenza viruses. Highly pathogenic avian influenza viruses have been found in waterfowls since 2005. It is known that H5 and H7 subtypes of avian influenza viruses can be mutated into highly pathogenic avian influenza viruses in domestic poultry. In this study, we isolated novel reassortant H7N7 avian influenza virus from the fecal materials of migratory birds in the Western part of South Korea in 2016, and analyzed the sequences of all its eight genes. The genetic analysis of our isolate, A/waterfowl/Korea/S017/2016 (H7N7) indicates that it was reassortant avian influenza virus containing genes of both avian influenza viruses of wild birds and domestic ducks. Phylogenetic analysis showed that our isolate belongs to Eurasian lineage of avian influenza virus. Since avian influenza viruses continue to evolve, and H7-subtype avian influenza virus can mutate into the highly pathogenic avian influenza viruses, which cause the great threat to humans and animals, we closely survey the infections in both wild birds, and domestic poultry, and mammals.

Interpretation and Prospection of Influenza Virus through Swine-origin Influenza Virus (신종플루 바이러스를 통한 인플루엔자 바이러스의 해석 및 전망)

  • Chang, Kyung-Soo
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.42 no.1
    • /
    • pp.1-15
    • /
    • 2010
  • Swine influenza virus (SIV) or swine-origin influenza virus (S-OIV) is endemic in swine, and classified into influenza A and influenza C but not influenza B. Swine influenza A includes H1N1, H1N2, H3N1, H3N2 and H2N3 subtypes. Infection of SIV occurs in only swine and that of S-OIV is rare in human. What human can be infected with S-OIV is called as zoonotic swine flu. Pandemic 2009 swine influenza H1N1 virus (2009 H1N1) was emerged in Mexico, America and Canada and spread worldwide. The triple-reassortant H1N1 resulting from antigenic drift was contained with HA, NA and PB1 of human or swine influenza virus, PB2 and PA polymerase of avian influenza virus, and M, NP and NS of swine influenza virus, The 2009 H1N1 enables to transmit to human and swine. The symptoms and signs in human infected with 2009 H1N1 virus are fever, cough and sore throat, pneumonia as well as diarrhea and vomiting. Co-infection with other viruses and bacteria such as Streptococcus pneumoniae can occur high mortality in high-risk population. 2009 H1N1 virus was easily differentiated from seasonal flu by real time RT-PCR which contributed rapid and confirmed diagnosis. The 2009 H1N1 virus was treated with NA inhibitors such as oseltamivir (Tamiflu) and zanamivir (Relenza) but not with adamantanes such as amantadine and rimantadine. Evolution of influenza virus has continued in various hosts. Development of a more effective vaccine against influenza prototypes is needed to protect new influenza infection such as H5 and H7 subtypes to infect to multi-organ and cause high pathogenicity.

  • PDF

Molecular Characterization of an Avian-origin Reassortant H7N1 Influenza Virus (조류 유래 재조합 H7N1 인플루엔자 바이러스의 분자적 특성 규명)

  • Sun-Woo Yoon
    • Journal of Life Science
    • /
    • v.33 no.8
    • /
    • pp.605-611
    • /
    • 2023
  • Recently, sporadic cases of human infection by genetic reassortants of H7Nx influenza A viruses have been reported; such viruses have also been continuously isolated from avian species. In this study, A/wild bird/South Korea/sw-anu/2023, a novel reassortant of the H7N1 avian influenza virus, was analyzed using full-genome sequencing and molecular characterization. Phylogenetic analysis showed that A/wild bird/South Korea/sw-anu/2023 belonged to the Eurasian lineage of H7Nx viruses. The polymerase basic (PB)2, PB1, polymerase acidic (PA), and nucleoprotein (NP) genes of these viruses were found to be closely related to those of avian influenza viruses isolated from wild birds, while the hemagglutinin (HA), neuraminidase (NA), matrix (M), and nonstructural (NS) genes were similar to those of avian influenza viruses isolated from domestic ducks. In addition, A/wild bird/South Korea/sw-anu/2023 also had a high binding preference for avian-specific glycans in the solid-phase direct binding assay. These results suggest the presence of a new generation of H7N1 avian influenza viruses in wild birds and highlight the reassortment of avian influenza viruses found along the East Asian-Australasian flyway. Overall, H7Nx viruses circulate worldwide, and mutated H7N1 avian viruses may infect humans, which emphasizes the requirement for continued surveillance of the H7N1 avian influenza virus in wild birds and poultry.