• Title/Summary/Keyword: Reasoning ability

Search Result 280, Processing Time 0.027 seconds

The Analysis of the Ability to Control Variables and the Types of Controlling Variables by Junior High School Students (중학생들의 변인 통제 논리력과 변인 통제 유형 분석)

  • Lee, Yoon-Ha;Kang, Soon-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.31 no.1
    • /
    • pp.32-47
    • /
    • 2011
  • The purpose of this study was to analyze the ability to control variables and the ways by which variables are controlled. First, the assessment criteria for evaluating the students' ability to control variables were developed for 8th grade students. Second, the ways variables are controlled were classified from student activity reports. These students' answers were categorized into six types (type A~ type F). Type A is defined as the group that excelled in recognizing the importance of controlling variables, eliminating unnecessary variables and identifying manipulated, dependent and controlled variables. Third, the scores of ability to control variables (CV score) and the classroom test of scientific reasoning (Lawson SRT) scores were measured. The results indicated that the CV score was highly correlated with Lawson SRT scores (r=.67, p<.01). Therefore, the assessment criteria developed in this study was used to evaluate the ability to control variables (CV score) and to measure the students' scientific reasoning.

An Analysis on secondary school students' problem-solving ability and problem-solving process through algebraic reasoning (중고등학생의 대수적 추론 문제해결능력과 문제해결과정 분석)

  • Kim, Seong Kyeong;Hyun, Eun Jung;Kim, Ji Yeon
    • East Asian mathematical journal
    • /
    • v.31 no.2
    • /
    • pp.145-165
    • /
    • 2015
  • The purpose of this study is to suggest how to go about teaching and learning secondary school algebra by analyzing problem-solving ability and problem-solving process through algebraic reasoning. In doing this, 393 students' data were thoroughly analyzed after setting up the exam questions and analytic standards. As with the test conducted with technical school students, the students scored low achievement in the algebraic reasoning test and even worse the majority tried to answer the questions by substituting arbitrary numbers. The students with high problem-solving abilities tended to utilize conceptual strategies as well as procedural strategies, whereas those with low problem-solving abilities were more keen on utilizing procedural strategies. All the subject groups mentioned above frequently utilized equations in solving the questions, and when that utilization failed they were left with the unanswered questions. When solving algebraic reasoning questions, students need to be guided to utilize both strategies based on the questions.

The Relationship Between the Functions of Prefrontal Lobe and the Formation of Conservation Logic in Elementary School Children (초등학교 고학년 학생의 전두엽연합령 기능에 따른 보존논리 형성 정도)

  • 김영신;나은미;권용주;정완호
    • Journal of Korean Elementary Science Education
    • /
    • v.20 no.1
    • /
    • pp.9-16
    • /
    • 2001
  • The purpose of this study is to investigate the functions of prefrontal lobe on the formation of conservation scheme of elementary students. In this study, 107 students of 4th to 6th grades were selected from the elementary school in Seoul area. As to the research,4 items for conservation logic test from GALT test sheet were used. The planning ability, inhibiting ability and reasoning ability were measured for the prefrontal lobe functions. About 30% of 4-6 grade students did not have volume conservation logic skills. The formation of conservations was not linear. Inhibiting ability was significantly different in level of conservation. And, conservation logic skills were significantly correlated with cognitive variables. Reasoning ability was significantly explained about 10% of the conservation logic in 4-6 grades.

  • PDF

An Analysis on the Proportional Reasoning Understanding of 6th Graders of Elementary School -focusing to 'comparison' situations- (초등학교 6학년 학생들의 비례 추론 능력 분석 -'비교' 상황을 중심으로-)

  • Park, Ji Yeon;Kim, Sung Joon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.20 no.1
    • /
    • pp.105-129
    • /
    • 2016
  • The elements of mathematical processes include mathematical reasoning, mathematical problem-solving, and mathematical communications. Proportion reasoning is a kind of mathematical reasoning which is closely related to the ratio and percent concepts. Proportion reasoning is the essence of primary mathematics, and a basic mathematical concept required for the following more-complicated concepts. Therefore, the study aims to analyze the proportion reasoning ability of sixth graders of primary school who have already learned the ratio and percent concepts. To allow teachers to quickly recognize and help students who have difficulty solving a proportion reasoning problem, this study analyzed the characteristics and patterns of proportion reasoning of sixth graders of primary school. The purpose of this study is to provide implications for learning and teaching of future proportion reasoning of higher levels. In order to solve these study tasks, proportion reasoning problems were developed, and a total of 22 sixth graders of primary school were asked to solve these questions for a total of twice, once before and after they learned the ratio and percent concepts included in the 2009 revised mathematical curricula. Students' strategies and levels of proportional reasoning were analyzed by setting up the four different sections and classifying and analyzing the patterns of correct and wrong answers to the questions of each section. The results are followings; First, the 6th graders of primary school were able to utilize various proportion reasoning strategies depending on the conditions and patterns of mathematical assignments given to them. Second, most of the sixth graders of primary school remained at three levels of multiplicative reasoning. The most frequently adopted strategies by these sixth graders were the fraction strategy, the between-comparison strategy, and the within-comparison strategy. Third, the sixth graders of primary school often showed difficulty doing relative comparison. Fourth, the sixth graders of primary school placed the greatest concentration on the numbers given in the mathematical questions.

The Comparison of the Scientifically Gifted and General Children's Characteristics on Reasoning Patterns in Creative Science Problem Solving Processes (초등 과학 영재와 일반 아동의 과학 창의적 문제 해결 과정에서 나타난 사고 유형 및 특성)

  • Lee, Soo-Jin;Bae, Jin-Ho;Kim, Eun-Jin
    • Journal of Korean Elementary Science Education
    • /
    • v.25 no.spc5
    • /
    • pp.567-581
    • /
    • 2007
  • This study examined patterns of reasoning of both the scientifically-gifted and children of average ability as witnessed in their science problem solving skills. Science problem solving skills are one of the significant characteristics of scientifically gifted children, and by using methods such as individual interviews, inductive reasoning, abductive reasoning, and deductive reasoning, the characteristics of these children can be to be further explored and categorized. The study also compared the findings with those of average children. This study sought to determine efficient guidelines fur teaching the scientifically-gifted, to come up with basic materials for developing relevant programs, and to find suggestions for identifying such students. The results of the study are as follows: Firstly, the creative science problem solving skills of the scientifically-gifted were better than that of the average students. Secondly, all of the three reasoning patterns used revealed in creative science solving processes were different between the gifted and the average, especially in terms of abductive reasoning, which was proved to reveal the greatest distinction between the two groups.

  • PDF

A Survey on the Proportional Reasoning Ability of Fifth, Sixth, and Seventh Graders (5, 6, 7학년 학생들의 비례추론 능력 실태 조사)

  • Ahn, Suk-Hyun;Pang, Jeong-Suk
    • Journal of Educational Research in Mathematics
    • /
    • v.18 no.1
    • /
    • pp.103-121
    • /
    • 2008
  • The primary purpose of this study was to gather knowledge about $5^{th},\;6^{th},\;and\;7^{th}$ graders' proportional reasoning ability by investigating their reactions and use of strategies when encounting proportional or nonproportional problems, and then to raise issues concerning instructional methods related to proportion. A descriptive study through pencil-and-paper tests was conducted. The tests consisted of 12 questions, which included 8 proportional questions and 4 nonproportional questions. The following conclusions were drawn from the results obtained in this study. First, for a deeper understanding of the ratio, textbooks should treat numerical comparison problems and qualitative prediction and comparison problems together with missing-value problems. Second, when solving missing-value problems, students correctly answered direct-proportion questions but failed to correctly answer inverse-proportion questions. This result highlights the need for a more intensive curriculum to handle inverse-proportion. In particular, students need to experience inverse-relationships more often. Third, qualitative reasoning tends to be a more general norm than quantitative reasoning. Moreover, the former could be the cornerstone of proportional reasoning, and for this reason, qualitative reasoning should be emphasized before proportional reasoning. Forth, when dealing with nonproportional problems about 34% of students made proportional errors because they focused on numerical structure instead of comprehending the overall relationship. In order to overcome such errors, qualitative reasoning should be emphasized. Before solving proportional problems, students must be enriched by experiences that include dealing with direct and inverse proportion problems as well as nonproportional situational problems. This will result in the ability to accurately recognize a proportional situation.

  • PDF

Fostering Algebraic Reasoning Ability of Elementary School Students: Focused on the Exploration of the Associative Law in Multiplication (초등학교에서의 대수적 추론 능력 신장 방안 탐색 - 곱셈의 결합법칙 탐구에 관한 수업 사례 연구 -)

  • Choi, Ji-Young;Pang, Jeong-Suk
    • School Mathematics
    • /
    • v.13 no.4
    • /
    • pp.581-598
    • /
    • 2011
  • Given the growing agreement that algebra should be taught in the early stage of the curriculum, considerable studies have been conducted with regard to early algebra in the elementary school. However, there has been lack of research on how to organize mathematic lessons to develop of algebraic reasoning ability of the elementary school students. This research attempted to gain specific and practical information on effective algebraic teaching and learning in the elementary school. An exploratory qualitative case study was conducted to the fourth graders. This paper focused on the associative law of the multiplication. This paper showed what kinds of activities a teacher may organize following three steps: (a) focus on the properties of numbers and operations in specific situations, (b) discovery of the properties of numbers and operations with many examples, and (c) generalization of the properties of numbers and operations in arbitrary situations. Given the steps, this paper included an analysis on how the students developed their algebraic reasoning. This study provides implications on the important factors that lead to the development of algebraic reasoning ability for elementary students.

  • PDF

Suggested Clinical Reasoning Strategies Using a Mnemonic Device for Patients with Neurological Disorders (연상법을 이용한 신경계 환자의 임상적 추론 전략 제안)

  • Woo, Young-Keun
    • PNF and Movement
    • /
    • v.17 no.1
    • /
    • pp.145-156
    • /
    • 2019
  • Purpose: This study suggests clinical reasoning strategies for therapists with little experience in clinical reasoning for the evaluation and treatment of patients with neurological disorders. Methods: The suggested method was the mnemonic PT STRESS whose initials represent the body structure and functions that can affect the activity limits and the items that can cause problems at the functional level in patients with neurological disorders. Results: PT STRESS stands for pain (P), ability of the trunk (T), sensation (S), tone (T), range of motion (R), emotion and endurance (E), muscular strength (strength), and stability (S). It tests and measures problems in the body structure and functions. Conclusion: This study suggests easy clinical reasoning strategies that can be used by therapists who have insufficient experience in the evaluation or treatment of patients with neurological disorders. However, more factors need to be considered in the future with regard to clinical reasoning of the diverse problems of patients with neurological disorders.

The Use of the Geometer's Sketchpad in Eighth-Grade Students' Quadrilateral Learning (The Geometer's Sketchpad를 활용한 8학년 학생들의 사각형 학습)

  • Han, Hye-Sook
    • Journal of the Korean School Mathematics Society
    • /
    • v.11 no.3
    • /
    • pp.513-541
    • /
    • 2008
  • The purposes of the study were to investigate whether the use of the Geometer's Sketchpad(GSP) is more effective than the use of traditional tools such as ruler and protractor to enhance eighth- grade students' understanding of quadrilaterals and geometric reasoning ability and to examine how the use of the software affects on the development of students' understanding and reasoning ability. According to the results of the posttest, there was a significant difference in student achievement between students using GSP and students using ruler and protractor. Students using GSP significantly outperformed students using ruler and protractor on the posttest. Student interview data showed that the use of the GSP was more effective in developing students' geometric reasoning ability. Students using GSP achieved higher degrees of acquisition for van Hiele level 2 and 3 than students using ruler and protractor. Dynamic visual representations and hands-on experiences provided in GSP learning environment helped students approach quadrilateral concepts more conceptually and realize their pre-existing conceptual errors and re-conceptualize their mathematical ideas.

  • PDF

Investigation of Scientific Argumentation in the Classes for Elementary Gifted Students (초등 단위 학교 영재 수업에서 나타나는 과학적 논증 과정에 대한 탐색)

  • Lim, Hyeon-Ju;Shin, Young-Joon
    • Journal of Korean Elementary Science Education
    • /
    • v.31 no.4
    • /
    • pp.513-531
    • /
    • 2012
  • This study was to analyze the characteristic of scientific argumentation in the classes for the gifted of elementary school. The participants of this study were 5 fifth graders and 9 sixth graders, 14 in total, from the basic unit schools for gifted students of J elementary school in Incheon city. And it constituted small scale groups made up of 2~3 students with similar or identical ability in scientific reasoning. It had set up hypothesis for each group before the experiment, and students had a group discussion as a whole after the experiment. Classes were conducted 4 times, all courses were recorded as a sound/video. The ability in scientific reasoning of the students was inspected, making use of SRT II by means of pre-survey, and their argumentation levels were analyzed, utilizing 'Rubric for scientific argumentation course assessment.' As a result, argumentations did not incurred in every class. Analysis in argumentations of the students resulted in low level argumentation. This means argumentation cannot incur based on that with the limit in understanding the principle of experiments over the threshold of textbook no matter that he is an gifted student or not. The student both in formal operational period and transition period (2B/3A), the ability of scientific thinking in upper level, was improved of his argumentative ability in an overall aspect. However, a student of concrete operational period, the ability of scientific thinking in lower level, had argumentation with still lower level even after the experiment at the moment of discussing with the students on the upper level of scientific thinking ability.