• Title/Summary/Keyword: Rear-lamp detection

Search Result 5, Processing Time 0.021 seconds

Fast Lamp Pairing-based Vehicle Detection Robust to Atypical and Turn Signal Lamps at Night

  • Jeong, Kyeong Min;Song, Byung Cheol
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.4
    • /
    • pp.269-275
    • /
    • 2017
  • Automatic vehicle detection is a very important function for autonomous vehicles. Conventional vehicle detection approaches are based on visible-light images obtained from cameras mounted on a vehicle in the daytime. However, unlike daytime, a visible-light image is generally dark at night, and the contrast is low, which makes it difficult to recognize a vehicle. As a feature point that can be used even in the low light conditions of nighttime, the rear lamp is virtually unique. However, conventional rear lamp-based detection methods seldom cope with atypical lamps, such as LED lamps, or flashing turn signals. In this paper, we detect atypical lamps by blurring the lamp area with a low pass filter (LPF) to make out the lamp shape. We also propose to detect flickering of the turn signal lamp in a manner such that the lamp area is vertically projected, and the maximum difference of two paired lamps is examined. Experimental results show that the proposed algorithm has a higher F-measure value of 0.24 than the conventional lamp pairing-based detection methods, on average. In addition, the proposed algorithm shows a fast processing time of 6.4 ms per frame, which verifies real-time performance of the proposed algorithm.

Head/Rear Lamp Detection for Stop and Wrong Way Vehicle in the Tunnel (터널 내 정차 및 역주행 차량 인식을 위한 전조등과 후미등 검출 알고리즘)

  • Kim, Gyu-Yeong;Do, Jin-Kyu;Park, Jang-Sik;Kim, Hyun-Tae;Yu, Yun-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.601-602
    • /
    • 2011
  • In this paper, we propose head/rear lamp detection algorithm for stopped and wrong way vehicle recognition. It is shown that our algorithm detected vehicles based on the experimental analysis about the color information of vehicle's lamps. The simulation results show the detection rate about stopped and wrong way vehicles is achieved over 94% and 96% in the tunnel HD(High Definition) video image.

  • PDF

Night-time Vehicle Detection Method Using Convolutional Neural Network (합성곱 신경망 기반 야간 차량 검출 방법)

  • Park, Woong-Kyu;Choi, Yeongyu;KIM, Hyun-Koo;Choi, Gyu-Sang;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.2
    • /
    • pp.113-120
    • /
    • 2017
  • In this paper, we present a night-time vehicle detection method using CNN (Convolutional Neural Network) classification. The camera based night-time vehicle detection plays an important role on various advanced driver assistance systems (ADAS) such as automatic head-lamp control system. The method consists mainly of thresholding, labeling and classification steps. The classification step is implemented by existing CIFAR-10 model CNN. Through the simulations tested on real road video, we show that CNN classification is a good alternative for night-time vehicle detection.

The Stopped Vehicle Detection in the Tunnel Incident Surveillance System (터널 영상 유고 감지 시스템에서 정차 검출 알고리즘)

  • Kim, Gyu-Yeung;Lee, Geun-Hoo;Kim, Hyun-Tae;Kim, Jae-Ho;Yu, Yun-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.607-608
    • /
    • 2011
  • In this paper, we propose stopped vehicle detection algorithm in the tunnel. It is shown that our method distinguished objects from background estimated image, and then detected stopped vehicles efficiently based on the experimental analysis about the color information of their lamps. The simulation results show the detection rate is achieved over 95% in the tunnel image.

  • PDF

Night Time Vehicle Detection using Rear-Lamp Intensity (후방 램프 밝기 정보를 이용한 야간 차량 검출)

  • Jeong, Kyeong Min;Song, Byung Cheol
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.06a
    • /
    • pp.191-193
    • /
    • 2016
  • 후방 램프를 이용하는 기존의 차량 검출 기법들은 주로 색상 정보를 활용한다. 그러나 조도가 낮은 야간 환경의 특성상 색상 정보를 온전히 활용할 수 없는 경우가 빈번하게 발생한다. 이를 해결하기 위해 본 논문에서는 야간 환경에서 후방 램프의 밝기 값만을 이용해 차량을 검출한다. 일반적으로 후방 램프를 검출하기 위해 색상 정보와 밝기 값을 이용해 이진화를 하게 되는데, 본 논문에서는 밝기 값을 이용해 톤 매핑 과정을 수행하여 후방 램프의 모양을 보존한다. 밝기 값 만을 이용하기 때문에 오검출이 증가하게 되는데 이는 후방 램프에 대한 조건을 알고리즘에 적용함으로써 해결한다. 이에 더해 추적 알고리즘을 적용하여 남아있는 오검출을 제거한다. 이러한 과정은 모두 실시간으로 이루어지기 때문에 최근 활발히 연구되고 있는 자동 주행 시스템이나 주행 보조 시스템 등에 활용 될 수 있다.

  • PDF