• Title/Summary/Keyword: Rear recombination

Search Result 23, Processing Time 0.035 seconds

An Analysis on rear contact for crystalline silicon solar cell (결정질 실리콘 태양전지에 적용하기 위한 후면전극 형성에 관한 연구)

  • Kwon, Hyukyong;Lee, Jaedoo;Kim, Minjung;Lee, Soohong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.91.1-91.1
    • /
    • 2010
  • There are some methods for increasing efficiency of crystalline silicon solar cells. Among them, It is important to reduce the recombination loss of surface for high efficiency. In order to reduce recombination loss is a way to use the BSF(Back Surface Field). The BSF on the back of the p-type wafer forms a p+layer. so, it is prevented to act electrons of the p-area for the rear recombination. As a result, the leakage current is reduced and the rear-contact has a good Ohmic contact. therefore, open-circuit-voltage and Fill factor(FF) of solar cells are increased. This paper investigates the formation of rear contact process comparing Aluminum-paste(Al-paste) with Aluminum-Metal(99.9%). It is shown that the Aluminum-Metal provides high conductivity and low contact resistance of $21.35m{\Omega}cm$ using the Vacuum evaporation process but, it is difficult to apply the standard industrial process because high Vacuum is needed and it costs a tremendous amount more than Al-paste. On the other hand, using the Al-paste process by screen printing is simple for formation of metal contact and it is possible to produce the standard industrial process. however, it is lower than Aluminum-Metal(99.9) of conductivity because of including mass glass frit. In this study, contact resistances were measured by 4-point prove. each of contact resistances is $21.35m{\Omega}cm$ of Aluminum-Metal and $0.69m{\Omega}cm$ of Al-paste. and then rear contact have been analyzed by Scanning Electron Microscopy(SEM).

  • PDF

The study of High-efficiency method usign Tri-crystalline Silicon solar cells (삼결정 실리콘 태양전지의 19%변환 효율 최적요건 고찰에 관한 연구)

  • 이욱재;박성현;고재경;김경해;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.318-321
    • /
    • 2002
  • This paper presents a proper condition to achieve high conversion efficiency using PC1D simulator on sri-crystalline Si solar cells. Various efficiency influencing parameters such as rear surface recombination velocity and minority carrier diffusion length in the base region, front surface recombination velocity, junction depth and doping concentration in the Emitter layer, BSF thickness and doping concentration were investigated. Optimized cell parameters were given as rear surface recombination of 1000 cm/s, minority carrier diffusion length in the base region 200 $\mu\textrm{m}$, front surface recombination velocity 100 cm/s, sheet resistivity of emitter layer 100 Ω/$\square$, BSF thickness 5 $\mu\textrm{m}$, doping concentration 5${\times}$10$\^$19/ cm$\^$-3/. Among the investigated variables, we learn that a diffusion length of base layer acts as a key factor to achieve conversion efficiency higher than 19 %.

  • PDF

Analysis of the Formation of Rear Contact for Monocrystalline Silicon Solar Cells (단결정 실리콘 태양전지의 후면 전극형성에 관한 비교분석)

  • Kwon, Hyuk-Yong;Lee, Jae-Doo;Kim, Min-Jeong;Lee, Soo-Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.7
    • /
    • pp.571-574
    • /
    • 2010
  • Surface recombination loss should be reduced for high efficiency of solar cells. To reduce this loss, the BSF (back surface field) is used. The BSF on the back of the p-type wafer forms a p+layer, which prevents the activity of electrons of the p-area for the rear recombination. As a result, the leakage current is reduced and the rear-contact has a good Ohmic contact. Therefore, the open-circuit-voltage (Voc) and fill factor (FF) of solar cells are increased. This paper investigates the formation of the rear contact process by comparing aluminum-paste (Al-paste) with pure aluminum-metal(99.9%). Under the vacuum evaporation process, pure aluminum-metal(99.9%) provides high conductivity and low contact resistance of $4.2\;m{\Omega}cm$, but It is difficult to apply the standard industrial process to it because high vacuum is needed, and it's more expensive than the commercial equipment. On the other hand, using the Al-paste process by screen printing is simple for the formation of metal contact, and it is possible to produce the standard industrial process. However, Al-paste used in screen printing is lower than the conductivity of pure aluminum-metal(99.9) because of its mass glass frit. In this study, contact resistances were measured by a 4-point probe. The contact resistance of pure aluminum-metal was $4.2\;m{\Omega}cm$ and that of Al-paste was $35.69\;m{\Omega}cm$. Then the rear contact was analyzed by scanning electron microscope (SEM).

An Optimization of Cast poly-Si solar cell using a PC1O Simulator (PC1D를 이용한 cast poly-Si 태양전지의 최적화)

  • Lee, Su-Eun;Lee, In;Ryu, Chang-Wan;Yi, Ju-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.553-556
    • /
    • 1999
  • This paper presents a proper condition to achieve above 19 % conversion efficiency using PC1D simulator. Cast poly-Si wafers with resistivity of 1 $\Omega$-cm and thickness of 250 ${\mu}{\textrm}{m}$ were used as a starting material. Various efficiency influencing parameters such as rear surface recombination velocity and minority carrier diffusion length in the base region, front surface recombination velocity, junction depth and doping concentration in the Emitter layer, BSF thickness and doping concentration were investigated. Optimized cell parameters were given as rear surface recombination of 1000 cm/s, minority carrier diffusion length in the base region 200 ${\mu}{\textrm}{m}$, front surface recombination velocity 100 cnt/s, sheet resistivity of emitter layer 100 $\Omega$/$\square$, BSF thickness 5 ${\mu}{\textrm}{m}$, doping concentration 5$\times$10$^{19}$ cm$^3$ . Among the investigated variables, we learn that a diffusion length of base layer acts as a key factor to achieve conversion efficiency higher than 19 %. Further details of simulation parameters and their effects to cell characteristics are discussed in this paper.

  • PDF

A Study on the Optimization of Polysilicon Solar Cell Structure (다결정 실리콘 태양전지 구조 최적화에 관한 연구)

  • Lee, Jae-Hyeong;Jung, Hak-Ki;Jung, Dong-Su;Lee, Jong-In
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.702-705
    • /
    • 2011
  • Poly-Si wafers with resistivity of 1 [${\Omega}$-cm[ and thickness of 50 [${\mu}m$] were used as a starting material. Various efficiency influencing parameters such as rear surface recombination velocity and minority carrier diffusion length in the base region, front surface recombination velocity, junction depth and doping concentration in the Emitter layer, BSF thickness and doping concentration were investigated. Optimized cell parameters were given as rear surface recombination of 1000 [cm/sec], minority carrier diffusion length in the base region 50 [${\mu}m$], front surface recombination velocity 100 [cm/sec], sheet resistivity of emitter layer 100 [${\Omega}/{\Box}$], BSF thickness 0.5 [${\mu}m$], doping concentration $5{\times}10^{19}\;cm^{-3}$. Among the investigated variables, we learn that a diffusion length of base layer acts as a key factor to achieve conversion efficiency higher than 19.8 %. Further details of simulation parameters and their effects to cell characteristics are discussed in this paper.

  • PDF

Effects of Firing Ambient on Rear Metallization for Silicon Solar Cells (분위기에 따른 실리콘 태양전지 후면 전극 및 후면 전계의 형상과 특성 분석)

  • Park, Sungeun;Kim, Young Do;Park, Hyomin;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Korean Journal of Materials Research
    • /
    • v.25 no.7
    • /
    • pp.336-340
    • /
    • 2015
  • For rear metallization with Al paste, Al back contacts require good passivation, high reflectance, and a processing temperature window compatible with the front metal. In this paper, the effect of the firing ambient during the metallization process on the formation of Al rear metal was investigated. We chose three different gases as ambient gases during the firing process. Using SEM, we observed the formation of a back surface field in $N_2$, $O_2$, and Air ambients. To determine the effect of the ambient on Voc, the suns-Voc tool was used. In this study, we described the mechanism of burn-out of organic materials in Al paste during the firing process. The oxygen ambient plays an important role in the burn-out process. We calculated the efficiency with obtained the back surface recombination velocities using PC1D simulation. It was found that the presence of oxygen during the firing process influenced the uniform back surface field because the organic materials in the Al paste were efficiently burned out during heating. The optimized temperature with oxygen flow shows an absolute efficiency of 19.1% at PC1D simulation.

The Method of improving efficiency of crystalline silicon solar cell with the thin wafer (Thin wafer를 이용한 결정질 실리콘 태양전지의 효율개선 방안)

  • Son, Hyukjoo;Park, Yonghwan;Kim, Deokyeol
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.50.1-50.1
    • /
    • 2010
  • 결정질 실리콘 태양전지의 원가에서 Wafer는 60~70%의 매우 높은 비중을 차지하고 있다. 많은 연구들이 원가 절감을 위하여 Wafer의 두께를 감소시키는 것에 집중하고 있다. 그러나 Wafer 두께의 감소는 태양전지의 효율 감소와 공정 진행 중에 파손율이 상승하는 등의 문제가 발생한다. 이에 본 논문에서는 결정질 태양전지 구조 중에서 24.7% 이상의 최고 변환 효율을 갖는 PERL(Passivated Emitter, Rear Locally diffuse) 구조를 대상으로 wafer 두께 감소에 따른 변환 효율 감소의 원인과 해결 방안을 제시하고자 한다. Simulation으로 확인한 결과 370 um 두께의 wafer에서 24.2 %의 효율은 50 um 두께의 wafer에서는 20.8 %로 감소함을 확인할 수 있었다. 얇아진 wafer에서 감소한 효율을 개선하기 위하여 후면 recombination velocity, 후면 fixed charge density, 후면 산화막 두께 등을 다양화하여, 각각의 경우에 대한 cell의 효율 변화를 살펴보았다. 그 결과 후면 recombination velocity, 후면 fixed charge density, 후면 산화막 두께를 최적화 하여, 각각 2.8 %p, 1.5 %p, 2.8 %p의 효율 개선 효과를 얻었다. 위 세 가지 효과를 동시에 적용하면 50 um wafer에서 370 um wafer 효율의 결과와 근접한 24.2 %의 효율을 얻을 수 있었다. 향후에는 위의 결과를 바탕으로 실제 실험을 통하여 확인할 계획이다.

  • PDF

PC1D 기반의 2스텝 도핑을 통한 실리콘 태양전지의 최적화

  • Kim, Yeong-Pil;Jeong, U-Won;Lee, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.256-256
    • /
    • 2009
  • This paper presents a proper condition to achieve above 17 % conversion efficiency using PC1D simulator. Crystalline silicon wafer with thickness of $240{\mu}m$ was used as a starting material. Various efficiency influencing parameters such as rear surface recombination velocity and minority carrier diffusion length in the base region, front surface recombination velocity, junction depth and doping concentration in the Emitter layer. Among the investigated variables, we learn that 2nd doping concentration as a key factor to achieve conversion efficiency higher than 17 %.

  • PDF

On Electroless Plating and Double Sided Buried Contact Silicon Solar Cells

  • Ebong, A.U.;Kim, D.S.;Lee, S.H.;Honsberg, C.B.
    • Korean Journal of Materials Research
    • /
    • v.6 no.6
    • /
    • pp.568-575
    • /
    • 1996
  • The double sided buried contact(DSBC)silicon solar cell processing requires doping of the rear and front grooves with boron and phosphorus respectively. The successful electroless plating of these grooves with the appropriate metals haave been found to depend on the boron conditions for the rear fingers. However, an increased understanding of electroless plating has removed this restriction. Thus the DSBC cells using different boron conditions can be electrolessly plated with ease. This paper presents the recent work done on metallizing the double sided buried contact silicon solar cells with heavily doped boron grooves. The cells results indicate that, the heavier the boron grooves, the poorer the cell performance because of the probable higher metal contact recombination associated with boron grooves.

  • PDF

Rear Surface Passivation with Al2O3 Layer by Reactive Magnetron Sputtering for High-Efficiency Silicon Solar Cell

  • Moon, Sun-Woo;Kim, Eun-Kyeom;Park, Won-Woong;Jeon, Jun-Hong;Choi, Jin-Young;Kim, Dong-Hwan;Han, Seung-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.211-211
    • /
    • 2012
  • The electrical loss of the photo-generated carriers is dominated by the recombination at the metal- semiconductor interface. In order to enhance the performance of the solar cells, many studies have been performed on the surface treatment with passivation layer like SiN, SiO2, Al2O3, and a-Si:H. In this work, Al2O3 thin films were investigated to reduce recombination at surface. The Al2O3 thin films have two advantages, such as good passivation properties and back surface field (BSF) effect at rear surface. It is usually deposited by atomic layer deposition (ALD) technique. However, ALD process is a very expensive process and it has rather low deposition rate. In this study, the ICP-assisted reactive magnetron sputtering method was used to deposit Al2O3 thin films. For optimization of the properties of the Al2O3 thin film, various fabrication conditions were controlled, such as ICP RF power, substrate bias voltage and deposition temperature, and argon to oxygen ratio. Chemical states and atomic concentration ratio were analyzed by x-ray photoelectron spectroscopy (XPS). In order to investigate the electrical properties, Al/(Al2O3 or SiO2,/Al2O3)/Si (MIS) devices were fabricated and characterized using the C-V measurement technique (HP 4284A). The detailed characteristics of the Al2O3 passivation thin films manufactured by ICP-assisted reactive magnetron sputtering technique will be shown and discussed.

  • PDF