• Title/Summary/Keyword: Rear axle stability

Search Result 7, Processing Time 0.021 seconds

The Comparison of Running Performances between Various Steering-type Guideway Vehicles (조향방식 안내궤도 차량들의 주행 안정성 비교)

  • 윤성호
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.1
    • /
    • pp.18-25
    • /
    • 2002
  • This paper is to study a comparison of ride stabilities for the guideway vehicle between its three primary steering types; the front-rear wheel steering type, tile independent wheel steering and the front wheel steering. A numerical model were built to investigate various factors to have an influence on the vehicular stability. It was shown that dynamic stabilities of the three types were dependent on the steering gain ratio of front wheel steering to rear. The front-rear wheel steering type was more stable for the value of positive steering gains and the shorter distance between front axle and guide link showed better stabilities. On the contrary, the independent wheel steering was more stable for the value of negative gains and the longer distance between front axle and guide link showed better stabilities. Ride characteristics of he front wheel steering seemed to be found midway. Ride behaviors due to time delay from front steering to rear were very different from steering type to type.

Analysis of Transient Maneuvers for Objectifying Evaluation of Vehicle Stability (차량 안정성 평가의 객관화를 위한 과도 운동 분석)

  • Kim, Jung-Sik;Kim, Young-Tae;Yoon, Yong-San
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.167-175
    • /
    • 2006
  • Directional stability is important performance in vehicle and tire design. The current methods to analyze this is generally based on linear concept. Using the existing concept, it cannot realistically explain the subjective assessment at all because it is hard to practically represent the nonlinear behaviour of a complex vehicle system in reality. In this paper, new method to analyze directional stability is introduced. At first, directional stability of vehicle is categorized into yaw, rear axle, and roll stability. In order to objectify these items, driver perceptual parameters based on subjective assessment are used. Using the perceptual parameters, it can successfully explain the transient maneuver of vehicle and extract objective parameters for directional stability. Finally, these objective parameters are successfully validated through two handling tests, lane change and severe lane change. The correlation results show that there exists a good correlation between subjective assessment and the proposed objective parameters.

An Evaluation on the Steering Stability of the Guideway Vehicle (안내궤도 차량의 조향 안정성 평가)

  • 윤성호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.209-215
    • /
    • 2002
  • A study of the guideway vehicle was made for a comparison of ride stabilities between its two primary steering types; one is the front wheel steering and the other the front-rear wheel. A numerical model as a closed loop system was built for an investigation of various factors to have an influence on the vehicular critical speed which is closely associated with ridabilities. It was shown that dynamics stabilities of the front steering type was much better over a large value of steering gain and the longer distance between front axle and guide link for both types provided better stabilities as well. A large steering gain ratio of the front to the rear significantly plays an important role in an improvement of stability in the front-rear steering. To observe a qualitative trend on stability behaviors, the root locus was obtained by considering a time lag which may be frequently caused by the complicated steering mechanism. In performing so, the appropriate selection of steering gain had a greater effect on the front-rear steering vehicle far more ride comfort. In addition, the dynamics model proposed here can be utilized for a more accurate evaluation on the vehicle design in lateral or yawing absorber and moreover expanded for the analysis of independent four-wheel steering vehicle.

A Study on Dynamic Characteristic for the Bi-modal Tram with All-Wheel-Steering System (전차륜 조향 장치를 장착한 굴절궤도 차량의 주행특성에 관한 연구)

  • Lee, Soo-Ho;Moon, Kyung-Ho;Jeon, Young-Ho;Park, Tae-Won;Lee, Jung-Shik;Kim, Duk-Gie
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.99-108
    • /
    • 2007
  • The bi-modal tram guided by the magnetic guidance system has two car-bodies and three axles. Each axle of the vehicle has an independent suspension to lower the floor of the car and improve ride quality. The turning radius of the vehicle may increase as a consequence of the long wheel base. Therefore, the vehicle is equipped with the All-Wheel-Steering(AWS) system for safe driving on a curved road. Front and rear axles should be steered in opposite directions, which means a negative mode, to minimize the turning radius. On the other hand, they also should be steered in the same direction, which means a positive mode, for the stopping mode. Moreover, only the front axle is steered for stability of the vehicle upon high-speed driving. In summary, steering angles and directions of the each axle should be changed according to the driving environment and steering mode. This paper proposes an appropriate AWS control algorithm for stable driving of the bi-modal tram. Furthermore, a multi-body model of the vehicle is simulated to verify the suitability of the algorithm. This model can also analyze the different dynamic characteristics between 2WS and AWS.

  • PDF

A Study on the Dynamic Characteristics of the Bi-modal Tram with All-Wheel-Steering System (전차륜 조향 장치를 장착한 굴절궤도 차량의 주행특성에 관한 연구)

  • Lee, Soo-Ho;Moon, Kyung-Ho;Jeon, Young-Ho;Lee, Jung-Shik;Kim, Duk-Gie;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.4
    • /
    • pp.444-450
    • /
    • 2007
  • The bi-modal tram guided by the magnetic guidance system has two car-bodies and three axles. Each axle of the vehicle has an independent suspension to lower the floor of the car and improve ride quality. The turning radius of the vehicle may increase as a consequence of the long wheel base. Therefore, the vehicle is equipped with the All-Wheel-Steering(AWS) system for safe driving on a curved road. Front and rear axles should be steered in opposite directions, which means a negative mode, to minimize the turning radius. On the other hand, they also should be steered in the same direction, which means a positive mode, for the stopping mode. Moreover, only the front axle is steered for stability of the vehicle upon high-speed driving. In summary, steering angles and directions of the each axle should be changed according to the driving environment and steering mode. This paper proposes an appropriate AWS control algorithm for stable driving of the bi-modal tram. Furthermore, a multi-body model of the vehicle is simulated to verify the suitability of the algorithm. This model can also analyze the different dynamic characteristics between 2WS and AWS.

CTBA Geometry Compensation System (CTBA 지오메트리 보상 시스템 개발)

  • Moon, Ha-Kyung;Lee, Byung-Rim;Kim, Hyo-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.113-119
    • /
    • 2012
  • CTBA(Coupled Torsion Beam Axle) has been adapted as the rear suspension of a compact car. Because that has the advantage of cost and weight in comparison with multi-link type. But CTBA has the disadvantage in vehicle stability to become oversteer occurring toe-out of the rear wheel when cornering and braking. In this study, we suggested CTBA Geometry Compensation System to overcome the disadvantage of CTBA. We predicted braking and cornering vehicle performance from proposed equation and numerical simulation. And also, the results were compared to objective and subjective evaluation in vehicle.

Experience with an On-board Weighing System Solution for Heavy Vehicles

  • Radoicic, Goran;Jovanovic, Miomir;Arsic, Miodrag
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.787-797
    • /
    • 2016
  • Mining, construction, and other special vehicles for heavy use are designed to work under high-performance and off-road working conditions. The driving and executive mechanisms of the support structures and superstructures of these vehicles frequently operate under high loads. Such high loads place the equipment under constant risk of an accident and can jeopardize the dynamic stability of the machinery. An experimental investigation was conducted on a refuse collection vehicle. The aim of this research was to determine the working conditions of a real vehicle: the kinematics of the waste container, that is, a hydraulic rotate drum for waste collection; the dynamics of the load manipulator (superstructure); the vibrations of the vehicle mass; and the strain (stress) of the elements responsible for the supporting structure. For an examination of the force (weight) on the rear axle of a heavy vehicle, caused by its own weight and additional load, a universal measurement system is proposed. As a result of this investigation, we propose an alternative system for continuous vehicle weighing during waste collection while in motion, that is, an on-board weighing system, and provide suggestions for measuring equipment designs.