• 제목/요약/키워드: Rear Suspension

검색결과 83건 처리시간 0.029초

토션빔 후륜 현가장치의 기구학적 특성 해석 (Kinematic Analysis of Torsion Beam Rear Suspension)

  • 강주석
    • 한국자동차공학회논문집
    • /
    • 제12권5호
    • /
    • pp.146-153
    • /
    • 2004
  • Torsion beam rear suspension has been widely adopted to the rear suspension of vehicle by reason of simple structure and cost competitiveness. Since the kinematic characteristics of torsion beam rear suspension are determined by elastic behavior of torsion beam, quasi-static analysis based on finite element modeling of torsion beam has been conducted to obtain the kinematic parameters of torsion beam rear suspension. In this paper, simple kinematic equations with rear geometric parameters are derived to predict the kinematic behavior of torsion beam rear suspension. The suspension design parameters such as roll center height, roll stiffness, roll steer and roll camber can be easily obtained with the kinematic equations. The suggested kinematic equations are validated from comparison with the test results and solution offered by ADAMS. The suspension design parameters varied with the position of torsion beam are discussed.

하이드로포밍을 이용한 후륜 현가장치 최적설계 (The Optimization of Rear Suspension Using Hydroforming)

  • 오진호;최한호;박성호
    • 소성∙가공
    • /
    • 제17권7호
    • /
    • pp.481-485
    • /
    • 2008
  • The subframe type rear suspension consisting of a side member and a front/rear cross member is widely used in a medium car and full car. In the small car case, the beam of tubular type without independent suspension system is used to reduce manufacturing cost. In this study, a subframe type rear suspension by hydroforming has been developed. In designing suspension, a driving stability and durability should be considered as an important factor for the performance improvement, respectively. Thus, we focus on increasing the stiffness of suspension and decreasing the maximum stress affecting a durability cycle life. Several optimization design techniques such as shape, size, and topology optimization are implemented to meet these requirements. The shapes of rear suspension obtained from optimization are formed by using hydroforming process. Through commercial software based on the finite element, the superiority of this design method is demonstrated.

하이드로포밍을 이용한 후륜 현가장치 설계 (The Design of Rear Suspension Using Hydroforming)

  • 오진호;최한호;이규민;박성호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.205-208
    • /
    • 2008
  • Generally, there are several types in rear suspension. The rear suspension of subframe type consisting of side member and front/rear cross member is widely used in a medium car and full car. In the small car case, the beam of tubular type without independent suspension system is used to reduce manufacturing cost. The optimized rear suspension of subframe type using hydroforming method has been developed in this study. In designing suspension, the driving stability and durability performance should be considered as an important factor. The stability is related to dynamic frequency and durability is connected with stress analysis of structure. We focus on increasing the stiffness of suspension and decreasing the maximum stress relating to durability cycle life. For making use of the merits of hydroforming which is possible to make the bead, tube expansion, and feeding in desiring position, several optimization design techniques such as shape, size, and topology optimization are proposed. This optimization scheme based on the sensitivity can provide distinguished performance improvement in using hydroforming. Through commercial software based on the finite element, the superiority of this design method is demonstrated.

  • PDF

후륜 현가장치 지오메트리 변화에 따른 대형 버스의 조종 안정성 연구 (A Study on the Handling Performances of a Large-Sized Bus with the Change of Rear Suspension Geometry)

  • 서권희;국종영;천인범
    • 한국자동차공학회논문집
    • /
    • 제9권4호
    • /
    • pp.176-183
    • /
    • 2001
  • It is difficult to find out the kinematic characteristics of a vehicle suspension without the usage of CAE software. The application of CAE software into suspension kinematics and dynamics yields the more precise knowledge on the chassis design. In this study, the influence of the suspension geometry on the handling performances of a large-sized bus is investigated using the DADS software. The front and rear suspension of a large-sized bus are a rigid axle suspension with the four control links. The elastokinematic analysis is performed to evaluate the roll characteristics of the front and rear suspension. The elastokinematic responses are evaluated in terms of the roll center height and roll steer for various geometric parameters. The roll center height is mainly dependent on the vertical displacement of a panhard rod and the vertical displacements of lower control links affect the roll steer of a rear suspension. The parameter study with the change of rear suspension geometry is conducted to investigate the vehicle handling performances. This parameter study shows that the vertical displacement and orientation of a panhard rod influence the handling performances of a large-sized bus significantly.

  • PDF

후륜 캠버각 변화가 차량 조종성능에 미치는 효과 분석 (Analysis of Vehicle Handling Performance due to Camber Angle Change of Rear Wheel)

  • 박성준;손정현
    • 한국자동차공학회논문집
    • /
    • 제18권2호
    • /
    • pp.67-73
    • /
    • 2010
  • In this study, a camber angle generating mechanism for rear suspension is suggested. An experimental device is implemented and tested. A full vehicle model with camber angle generating device by using ADAMS/Car is modeled. Rear left wheel and rear right wheel have 5 different camber angles in the simulations, respectively. Step steer and pulse steer simulations are carried out for investigating the effects of vehicle handling performance due to camber angle control of rear suspension. According to the results, the camber angle of rear suspension affects the vehicle handling performance during both simulations. Therefore, when the vehicle makes the right turn or left turn, left and right wheel should have the proper orientation for improving the handling performance, respectively.

전륜 및 후륜 캠버각 변화에 따른 차량 조종성능 효과 분석 (Effects on Vehicle Handling Performance according to Camber Angle Change of Front and Rear Wheel)

  • 박성준;손정현
    • 한국자동차공학회논문집
    • /
    • 제19권6호
    • /
    • pp.23-29
    • /
    • 2011
  • In this study, a camber angle generating mechanism for front and rear suspension is suggested. An experimental device is implemented and tested. A full vehicle model with camber angle generating device by using ADAMS/Car is modeled. Step steer simulations are carried out for investigating the effects of vehicle handling performance due to camber angle change of front and rear wheel. According to results, the camber angle of rear suspension affects the vehicle handling performance during both simulations. Therefore, when the vehicle makes the right turn or left turn, left and right wheel of front and rear suspension should have the proper orientation for improving the handling performance, respectively.

에어서스펜션 장착 전후의 화물트럭 적재함의 진동 특성 비교 (Comparison of Vibration Characteristics at the Freight Compartment of a Truck with and without Air Spring on the Rear Axle)

  • 장한기;조동철;송치문
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.836-839
    • /
    • 2006
  • This paper presented comparison of vibration characteristics of a 5-ton truck at the two kinds of rear axle suspension, a conventional leaf spring suspension and an air spring suspension. Vibration at the selected location in the freight compartment and the rear axle were measured while the vehicle was running on various kinds of road at the specified speed. At all kinds of the driving conditions used in the test the air spring suspension showed good performance of vibration attenuation, especailly at the frequency range of under 5 Hz.

  • PDF

내구성을 고려한 후륜현가 장치의 하이드로포밍 공정 설계 (Durability Based Design for Hydroforming process of Rear Suspension)

  • 김헌영;오인석;고정민;이동재;조우강
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.269-272
    • /
    • 2006
  • The hydroforming processing is a relatively new technology in comparison with conventional stamping process. The hydroforming processing makes torsion beam in rear suspension of automobile. The durability of torsion beam is very important characteristic that operate in an automobile. In order to optimize the hydroforming process and satisfy the durability, the hydroforming simulation which could control an axial compression and high internal pressure with computer simulation has to be operated. This paper is about an optimum design to improve the kinematic and compliance characteristics of a torsion-beam of suspension system. The result from finite element analysis shows that the forming and the durability are optimized. If there is effect of First pressure in hydroforming processing that gap is in the die tool, the prototype of tube is not satisfied on the durability test.

  • PDF

COMPLEX STOCHASTIC WHEELBASE PREVIEW CONTROL AND SIMULATION OF A SEMI-ACTIVE MOTORCYCLE SUSPENSION BASED ON HIERARCHICAL MODELING METHOD

  • Wu, L.;Chen, H.L.
    • International Journal of Automotive Technology
    • /
    • 제7권6호
    • /
    • pp.749-756
    • /
    • 2006
  • This paper presents a complex stochastic wheelbase preview control method of a motorcycle suspension based on hierarchical modeling method. As usual, a vehicle suspension system is controlled as a whole body. In this method, a motorcycle suspension with five Degrees of Freedom(DOF) is dealt with two local independent 2-DOF suspensions according to the hierarchical modeling method. The central dynamic equations that harmonize local relations are deduced. The vertical and pitch accelerations of the suspension center are treated as center control objects, and two local semi-active control forces can be obtained. In example, a real time Linear Quadratic Gaussian(LQG) algorithm is adopted for the front suspension and the combination of the wheelbase preview and LQG control method is designed for the rear suspension. The results of simulation show that the control strategy has less calculating time and is convenient to adopt different control strategies for front and rear suspensions. The method proposed in this paper provides a new way for the vibration control of multi-wheel vehicles.

이중너클을 이용한 후륜 토 및 캠버각 변화를 통한 조종안정성 개선 (Improvement of Vehicle Handling Performance due to Toe and Camber Angle Change of Rear Wheel by Using Double Knuckle)

  • 손정현;박성준
    • 한국자동차공학회논문집
    • /
    • 제21권1호
    • /
    • pp.121-127
    • /
    • 2013
  • In this study, suspension geometry is controlled to improve vehicle handling performance. The toe and camber of the rear suspension is controlled independently by using a double knuckle structure designed to enhance the vehicle cornering stability. Camber and toe changes in the rear wheel during high speed turning maneuver are important factors that influence the vehicle stability. Toe in the rear outer wheel plays a dominant role in cornering. A control algorithm for the camber and the toe angle input is developed to carry out the control simulation of the vehicle such as single lane change, the steady state cornering, the double lane change and the step steering simulation. Effects of the camber and toe angle control are analyzed from the computer simulations. A double lane change simulation revealed that the suspension mechanism with variable camber angle and variable toe angle decreases the peak body slip angle and peak yaw rate, 50% and 10%, respectively.