• Title/Summary/Keyword: Reappearance ignition test

Search Result 2, Processing Time 0.014 seconds

A Study on the Ignition Characteristics of the Electric Mosquito Repellent Mat (화재사례를 통한 전자 모기향의 발화특성에 관한 연구)

  • Choi, Jae-Sung;Choi, Seung-Bok;Min, Se-Hong;Choi, Don-Mook
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.196-205
    • /
    • 2009
  • Electric mosquito repellent mats can be ignited by damage of cables, partial disconnection, overload. tracking and so on. In this study, we examined the structure of mosquito repellent mat, positive temperature coefficient(PTC) thermistor, used for heating element and phenomenological characteristics of remains, obtained on the scene of fires. After reappearance ignition test of PTC thermistors, we did comparison analysis them. And we could confine that the feature of heating plate and the shape of bursting were same.

A Study on The Flame Stability of Pellet Combustor Using Swirling Flow (선회유동을 이용한 펠릿연소기의 화염안정화 연구)

  • Lee, Do-Hyung;Yun, Bong-Seok;Wang, Zhen-Wei
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.35-41
    • /
    • 2014
  • The wood pellet, which is one of the woody biomass energy, has very high economic efficiency and combustion efficiency during their combustion. The existing pellet burner have many problems such as low combustion efficiency, flame stabilization, ash problem and ignition time etc. We developed cyclonic wood pellet burner aim to 20,000kcal/hr boiler and measured temperature profiles and exhaust gases in order to investigate the flame stability and optimum combustion condition at any air flow conditions. As results, we confirmed the reappearance and the isotropy of the experimental results in the burner. At the first air flow inlet condition of excess air ratio ${\alpha}=0.02$, second air flow $490{\ell}/min$ had the best combustion condition when pellet supplied 30g. This result means that we need much air supply only for the swirling of second air flow. So we tested various second air flux at first air excess air ratio ${\alpha}=0.7$ condition. At this condition, we could find out that we don't need much second air and total air flux compared to the former condition. We will continuously test this work of air flow distribution, and swirl effect of first air flow, and ash elimination.