• Title/Summary/Keyword: Realistic terrain

Search Result 58, Processing Time 0.02 seconds

Virtual Target Overlay Technique by Matching 3D Satellite Image and Sensor Image (3차원 위성영상과 센서영상의 정합에 의한 가상표적 Overlay 기법)

  • Cha, Jeong-Hee;Jang, Hyo-Jong;Park, Yong-Woon;Kim, Gye-Young;Choi, Hyung-Il
    • The KIPS Transactions:PartD
    • /
    • v.11D no.6
    • /
    • pp.1259-1268
    • /
    • 2004
  • To organize training in limited training area for an actuai combat, realistic training simulation plugged in by various battle conditions is essential. In this paper, we propose a virtual target overlay technique which does not use a virtual image, but Projects a virtual target on ground-based CCD image by appointed scenario for a realistic training simulation. In the proposed method, we create a realistic 3D model (for an instructor) by using high resolution Geographic Tag Image File Format(GeoTIFF) satellite image and Digital Terrain Elevation Data (DTED), and extract the road area from a given CCD image (for both an instructor and a trainee). Satellite images and ground-based sensor images have many differences in observation position, resolution, and scale, thus yielding many difficulties in feature-based matching. Hence, we propose a moving synchronization technique that projects the target on the sensor image according to the marked moving path on 3D satellite image by applying Thin-Plate Spline(TPS) interpolation function, which is an image warping function, on the two given sets of corresponding control point pair. To show the experimental result of the proposed method, we employed two Pentium4 1.8MHz personal computer systems equipped with 512MBs of RAM, and the satellite and sensor images of Daejoen area are also been utilized. The experimental result revealed the effective-ness of proposed algorithm.

3-D Gravity Terrain Inversion for High Resolution Gravity Survey (고정밀 중력 탐사를 위한 3차원 중력 지형 역산 기법)

  • Park, Gye-Soon;Lee, Heui-Soon;Kwon, Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.691-697
    • /
    • 2005
  • Recently, the development of accurate gravity-meter and GPS make it possible to obtain high resolution gravity data. Though gravity data interpretation like modeling and inversion has significantly improved, gravity data processing itself has improved very little. Conventional gravity data processing removes gravity effects due to mass and height difference between base and measurement level. But, it would be a biased density model when some or whole part of anomalous bodies exist above the base level. We attempted to make a multiquadric surface of the survey area from topography with DEM (Digital Elevation Map) data. Then we constituted rectangular blocks which reflect real topography of the survey area by the multiquadric surface. Thus, we were able to carry out 3-D inversions which include information of topography. We named this technique, 3-D Gravity Terrain Inversion (3DGTI). The model test showed that the inversion model from 3DGTI made better results than conventional methods. Furthermore, the 3-dimensional model from the 3DGTI method could maintain topography and as a result, it showed more realistic geologic model. This method was also applied on real field data in Masan-Changwon area. Granitic intrusion is an important geologic characteristic in this area. This method showed more critical geological boundaries than other conventional methods. Therefore, we concluded that in the case of various rocks and rugged terrain, this new method will make better model than convention ones.

Interactive 3D Visualization of Ceilometer Data (운고계 관측자료의 대화형 3차원 시각화)

  • Lee, Junhyeok;Ha, Wan Soo;Kim, Yong-Hyuk;Lee, Kang Hoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.2
    • /
    • pp.21-28
    • /
    • 2018
  • We present interactive methods for visualizing the cloud height data and the backscatter data collected from ceilometers in the three-dimensional virtual space. Because ceilometer data is high-dimensional, large-size data associated with both spatial and temporal information, it is highly improbable to exhibit the whole aspects of ceilometer data simply with static, two-dimensional images. Based on the three-dimensional rendering technology, our visualization methods allow the user to observe both the global variations and the local features of the three-dimensional representations of ceilometer data from various angles by interactively manipulating the timing and the view as desired. The cloud height data, coupled with the terrain data, is visualized as a realistic cloud animation in which many clouds are formed and dissipated over the terrain. The backscatter data is visualized as a three-dimensional terrain which effectively represents how the amount of backscatter changes according to the time and the altitude. Our system facilitates the multivariate analysis of ceilometer data by enabling the user to select the date to be examined, the level-of-detail of the terrain, and the additional data such as the planetary boundary layer height. We demonstrate the usefulness of our methods through various experiments with real ceilometer data collected from 93 sites scattered over the country.

ROK Army War-Game Simulation System Development (한국 육군 제대별 워게임 모의체계 개발사례)

  • 이해관;김장현
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2003.06a
    • /
    • pp.31-35
    • /
    • 2003
  • In the late 1990s, ROK Army started developing a simulation model(ChangJo21) for division/corps level battle command training and finished it successfully. The CJ2l model provides realistic representation of Korean characteristics in doctrine, weapon systems, terrain, and climate etc. The successful development of CJ2l implanted us with confidence on high-technology model development and this has been our motive for development of JeonToo21 for battalion/regiment level battle command training and other war-game models like Hwarang21 (Rear Area Ops. Model) and Vision21 (Division Combat Analysis Model). Eventually, ROK Army was able to establish M&S system by echelons, from battalion to corps. Moreover interoperability between ROK-US simulation systems are on the progress. In this paper, we introduce recently developed 3 war-game simulation models and mention on the future directions of ROK Army Modeling & Simulation.

  • PDF

Application of Library-Based Texture Mapping Method (라이브러리 기반의 Texture Mapping 기법 활용연구)

  • Song Jeong-Heon;Park Su-Yong;Lim Hyo-Suk;Kim Yong-Il
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.369-373
    • /
    • 2006
  • A 3D modeling of urban area can be composed the terrain modeling that can express specific and shape of the terrain and the object modeling such as buildings, trees and facilities which are found in urban areas. Especially in a 3D modeling of building, it is very important to make a unit model by simplifying 3D structure and to take a texture mapping, which can help visualize surface information. In this study, the texture mapping technique, based on library for 3D urban modeling, was used for building modeling. This technique applies the texture map in the form of library which is constructed as building types, and then take mapping to the 3D building frame. For effectively apply, this technique, we classified buildings automatically using LiDAR data and made 3D frame using LiDAR and digital map. To express the realistic building texture, we made the texture library using real building photograph.

  • PDF

Real-time Rendering of Realistic Grasses Using Fractal and Shader-Instancing (프랙탈과 셰이더 인스턴싱 기법을 이용한 자연스러운 잔디의 실시간 렌더링)

  • Kim, Jin-Mo;Cho, Hyung-Je
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.2
    • /
    • pp.298-307
    • /
    • 2010
  • The grass is one of important components that cover the wide surfaces in the application such as game or real time simulation. Actually, it not easy to render effectively numerous grasses that grow over the wide terrain. To solve the difficulty, we must find a solution to the two contradictions in terms : quality and calculation cost. As a solution to the above-mentioned task, in this paper, we propose an efficient method to represent the natural grasses by introducing fractal theory and instancing technique. Although the existing grass representation methods make use of a simple rule of applying a basic grass model repeatedly in rendering process, on the contrary we take advantage of the basic property of fractal's self-similarity and we devise a natural representation method suited to the given environment by introducing two important growth factors such as nature of terrain and quantity of light, and finally we apply a GPU-based shader instancing technique to rendering numerous grass models in real-time.

A Semi-Automatic Building Modeling System Using a Single Satellite Image (단일 위성 영상 기반의 반자동 건물 모델링 시스템)

  • Oh, Seon-Ho;Jang, Kyung-Ho;Jung, Soon-Ki
    • The KIPS Transactions:PartB
    • /
    • v.16B no.6
    • /
    • pp.451-462
    • /
    • 2009
  • The spread of satellite image increases various services using it. Especially, 3D visualization services of the whole earth such as $Google\;Earth^{TM}$ and $Virtual\;Earth^{TM}$ or 3D GIS services for several cities provide realistic geometry information of buildings and terrain of wide areas. These service can be used in the various fields such as urban planning, improvement of roads, entertainment, military simulation and emergency response. The research about extracting the building and terrain information effectively from the high-resolution satellite image is required. In this paper, presents a system for effective extraction of the building model from a single high-resolution satellite image, after examine requirements for building model extraction. The proposed system utilizes geometric features of satellite image and the geometric relationship among the building, the shadow of the building, the positions of the sun and the satellite to minimize user interaction. Finally, after extracting the 3D building, the fact that effective extraction of the model from single high-resolution satellite will be show.

Implementation of Layered Clouds considering Frame Rate and Reality in Real-time Flight Simulation (비행시뮬레이션에서 프레임율과 현실감을 고려한 계층형 구름 구현 방안)

  • Kang, Seok-Yoon;Kim, Ki-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.72-77
    • /
    • 2014
  • There are two main technologies to implement cloud effect in flight simulator, cloud modeling using particle system and texture mapping. In former case, this approach may cause a low frame rate while unrealistic cloud effect is observed in latter case. To Solve this problem, in this paper, we propose how to apply fog effect into camera to display more realistic cloud effect with high frame rate. The proposed method is tested with massive terrain database environment through implemented software by using OpenSceneGraph. As a result, compared to texture mapping method, the degree of difference on frame rate is 1 or 2Hz while the cloud effect is significantly improved as realistic as particle system.

Decision-Making System of UAV for ISR Mission Level Autonomy (감시정찰 임무 자율화를 위한 무인기의 의사결정 시스템)

  • Uhm, Taewon;Lee, Jang-Woo;Kim, Gyeong-Tae;Yang, Seung-Gu;Kim, Joo-Young;Kim, Jae-Kyung;Kim, Seungkeun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.10
    • /
    • pp.829-839
    • /
    • 2021
  • Autonomous system for UAVs has a capability to decide an appropriate current action to achieve the goal based on the ultimate mission goal, context of mission, and the current state of the UAV. We propose a decision-making system that has an ability to operate ISR mission autonomously under the realistic limitation such as low altitude operation with high risk of terrain collision, a set of way points without change of visit sequence not allowed, and position uncertainties of the objects for the mission. The proposed decision-making system is loaded to a Hardware-In-the-loop Simulation environment, then tested and verified using three representative scenarios with a realistic mission environment. The flight trajectories of the UAV and selected actions via the proposed decision-making system are presented as the simulation results with discussion.

Iguana motion synthesis using soft body simulation (연체 시뮬레이션 기반 이구아나 동작 생성)

  • Moon, Jaeseok;Kwon, Taesoo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.1
    • /
    • pp.33-38
    • /
    • 2017
  • In this paper, we suggest a method to simulate high-quality iguana animation by using low-quality motion capture data. Iguana motion data captured using a small number of markers cannot express its movement precisely, and even with a realistic skin mesh, it shows unnatural movement because of limited degrees of freedom. In order to solve this problem, we propose to simulate a natural and flexible movement by applying a soft-body simulation technique which models the movement of an iguana according to muscle forces and body's elastic forces. We construct a motion graph from the motion capture data to describe the iguana's various movements, and utilize it to select appropriate movements when the iguana moves. A target point on a terrain is set from the user's input, and a graph path is planned based on it. As a result, the input movement of iguana walking on a flat ground transforms to a movement that is adapted in an online manner to the irregular heights of the terrain. Such a movement is used to calculate the ideal muscle lengths that are needed for soft-body simulation. Lastly, a tetrahedral mesh of the iguana is physically simulated to adapt to various situations by applying a soft-body simulation technique.