• Title/Summary/Keyword: Real-time tracking

Search Result 1,536, Processing Time 0.024 seconds

Prediction of Target Motion Using Neural Network for 4-dimensional Radiation Therapy (신경회로망을 이용한 4차원 방사선치료에서의 조사 표적 움직임 예측)

  • Lee, Sang-Kyung;Kim, Yong-Nam;Park, Kyung-Ran;Jeong, Kyeong-Keun;Lee, Chang-Geol;Lee, Ik-Jae;Seong, Jin-Sil;Choi, Won-Hoon;Chung, Yoon-Sun;Park, Sung-Ho
    • Progress in Medical Physics
    • /
    • v.20 no.3
    • /
    • pp.132-138
    • /
    • 2009
  • Studies on target motion in 4-dimensional radiotherapy are being world-widely conducted to enhance treatment record and protection of normal organs. Prediction of tumor motion might be very useful and/or essential for especially free-breathing system during radiation delivery such as respiratory gating system and tumor tracking system. Neural network is powerful to express a time series with nonlinearity because its prediction algorithm is not governed by statistic formula but finds a rule of data expression. This study intended to assess applicability of neural network method to predict tumor motion in 4-dimensional radiotherapy. Scaled Conjugate Gradient algorithm was employed as a learning algorithm. Considering reparation data for 10 patients, prediction by the neural network algorithms was compared with the measurement by the real-time position management (RPM) system. The results showed that the neural network algorithm has the excellent accuracy of maximum absolute error smaller than 3 mm, except for the cases in which the maximum amplitude of respiration is over the range of respiration used in the learning process of neural network. It indicates the insufficient learning of the neural network for extrapolation. The problem could be solved by acquiring a full range of respiration before learning procedure. Further works are programmed to verify a feasibility of practical application for 4-dimensional treatment system, including prediction performance according to various system latency and irregular patterns of respiration.

  • PDF

A preliminary study for development of an automatic incident detection system on CCTV in tunnels based on a machine learning algorithm (기계학습(machine learning) 기반 터널 영상유고 자동 감지 시스템 개발을 위한 사전검토 연구)

  • Shin, Hyu-Soung;Kim, Dong-Gyou;Yim, Min-Jin;Lee, Kyu-Beom;Oh, Young-Sup
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.1
    • /
    • pp.95-107
    • /
    • 2017
  • In this study, a preliminary study was undertaken for development of a tunnel incident automatic detection system based on a machine learning algorithm which is to detect a number of incidents taking place in tunnel in real time and also to be able to identify the type of incident. Two road sites where CCTVs are operating have been selected and a part of CCTV images are treated to produce sets of training data. The data sets are composed of position and time information of moving objects on CCTV screen which are extracted by initially detecting and tracking of incoming objects into CCTV screen by using a conventional image processing technique available in this study. And the data sets are matched with 6 categories of events such as lane change, stoping, etc which are also involved in the training data sets. The training data are learnt by a resilience neural network where two hidden layers are applied and 9 architectural models are set up for parametric studies, from which the architectural model, 300(first hidden layer)-150(second hidden layer) is found to be optimum in highest accuracy with respect to training data as well as testing data not used for training. From this study, it was shown that the highly variable and complex traffic and incident features could be well identified without any definition of feature regulation by using a concept of machine learning. In addition, detection capability and accuracy of the machine learning based system will be automatically enhanced as much as big data of CCTV images in tunnel becomes rich.

A Development of Facility Web Program for Small and Medium-Sized PSM Workplaces (중·소규모 공정안전관리 사업장의 웹 전산시스템 개발)

  • Kim, Young Suk;Park, Dal Jae
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.334-346
    • /
    • 2022
  • There is a lack of knowledge and information on the understanding and application of the Process Safety Management (PSM) system, recognized as a major cause of industrial accidents in small-and medium-sized workplaces. Hence, it is necessary to prepare a protocol to secure the practical and continuous levels of implementation for PSM and eliminate human errors through tracking management. However, insufficient research has been conducted on this. Therefore, this study investigated and analyzed the various violations in the administrative measures, based on the regulations announced by the Ministry of Employment and Labor, in approximately 200 small-and medium-sized PSM workplaces with fewer than 300 employees across in korea. This study intended to contribute to the prevention of major industrial accidents by developing a facility maintenance web program that removed human errors in small-and medium-sized workplaces. The major results are summarized as follows. First, It accessed the web via a QR code on a smart device to check the equipment's specification search function, cause of failure, and photos for the convenience of accessing the program, which made it possible to make requests for the it inspection and maintenance in real time. Second, it linked the identification of the targets to be changed, risk assessment, worker training, and pre-operation inspection with the program, which allowed the administrator to track all the procedures from start to finish. Third, it made it possible to predict the life of the equipment and verify its reliability based on the data accumulated through the registration of the pictures for improvements, repairs, time required, cost, etc. after the work was completed. It is suggested that these research results will be helpful in the practical and systematic operation of small-and medium-sized PSM workplaces. In addition, it can be utilized in a useful manner for the development and dissemination of a facility maintenance web program when establishing future smart factories in small-and medium-sized PSM workplaces under the direction of the government.

Intelligent Optimal Route Planning Based on Context Awareness (상황인식 기반 지능형 최적 경로계획)

  • Lee, Hyun-Jung;Chang, Yong-Sik
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.117-137
    • /
    • 2009
  • Recently, intelligent traffic information systems have enabled people to forecast traffic conditions before hitting the road. These convenient systems operate on the basis of data reflecting current road and traffic conditions as well as distance-based data between locations. Thanks to the rapid development of ubiquitous computing, tremendous context data have become readily available making vehicle route planning easier than ever. Previous research in relation to optimization of vehicle route planning merely focused on finding the optimal distance between locations. Contexts reflecting the road and traffic conditions were then not seriously treated as a way to resolve the optimal routing problems based on distance-based route planning, because this kind of information does not have much significant impact on traffic routing until a a complex traffic situation arises. Further, it was also not easy to take into full account the traffic contexts for resolving optimal routing problems because predicting the dynamic traffic situations was regarded a daunting task. However, with rapid increase in traffic complexity the importance of developing contexts reflecting data related to moving costs has emerged. Hence, this research proposes a framework designed to resolve an optimal route planning problem by taking full account of additional moving cost such as road traffic cost and weather cost, among others. Recent technological development particularly in the ubiquitous computing environment has facilitated the collection of such data. This framework is based on the contexts of time, traffic, and environment, which addresses the following issues. First, we clarify and classify the diverse contexts that affect a vehicle's velocity and estimates the optimization of moving cost based on dynamic programming that accounts for the context cost according to the variance of contexts. Second, the velocity reduction rate is applied to find the optimal route (shortest path) using the context data on the current traffic condition. The velocity reduction rate infers to the degree of possible velocity including moving vehicles' considerable road and traffic contexts, indicating the statistical or experimental data. Knowledge generated in this papercan be referenced by several organizations which deal with road and traffic data. Third, in experimentation, we evaluate the effectiveness of the proposed context-based optimal route (shortest path) between locations by comparing it to the previously used distance-based shortest path. A vehicles' optimal route might change due to its diverse velocity caused by unexpected but potential dynamic situations depending on the road condition. This study includes such context variables as 'road congestion', 'work', 'accident', and 'weather' which can alter the traffic condition. The contexts can affect moving vehicle's velocity on the road. Since these context variables except for 'weather' are related to road conditions, relevant data were provided by the Korea Expressway Corporation. The 'weather'-related data were attained from the Korea Meteorological Administration. The aware contexts are classified contexts causing reduction of vehicles' velocity which determines the velocity reduction rate. To find the optimal route (shortest path), we introduced the velocity reduction rate in the context for calculating a vehicle's velocity reflecting composite contexts when one event synchronizes with another. We then proposed a context-based optimal route (shortest path) algorithm based on the dynamic programming. The algorithm is composed of three steps. In the first initialization step, departure and destination locations are given, and the path step is initialized as 0. In the second step, moving costs including composite contexts into account between locations on path are estimated using the velocity reduction rate by context as increasing path steps. In the third step, the optimal route (shortest path) is retrieved through back-tracking. In the provided research model, we designed a framework to account for context awareness, moving cost estimation (taking both composite and single contexts into account), and optimal route (shortest path) algorithm (based on dynamic programming). Through illustrative experimentation using the Wilcoxon signed rank test, we proved that context-based route planning is much more effective than distance-based route planning., In addition, we found that the optimal solution (shortest paths) through the distance-based route planning might not be optimized in real situation because road condition is very dynamic and unpredictable while affecting most vehicles' moving costs. For further study, while more information is needed for a more accurate estimation of moving vehicles' costs, this study still stands viable in the applications to reduce moving costs by effective route planning. For instance, it could be applied to deliverers' decision making to enhance their decision satisfaction when they meet unpredictable dynamic situations in moving vehicles on the road. Overall, we conclude that taking into account the contexts as a part of costs is a meaningful and sensible approach to in resolving the optimal route problem.

The evaluation of the feasibility about prostate SBRT by analyzing interfraction errors of internal organs (분할치료간(Interfraction) 내부 장기 움직임 오류 분석을 통한 전립선암의 전신정위적방사선치료(SBRT) 가능성 평가)

  • Hong, soon gi;Son, sang joon;Moon, joon gi;Kim, bo kyum;Lee, je hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.2
    • /
    • pp.179-186
    • /
    • 2016
  • Purpose : To figure out if the treatment plan for rectum, bladder and prostate that have a lot of interfraction errors satisfies dosimetric limits without adaptive plan by analyzing MR image. Materials and Methods : This study was based on 5 prostate cancer patients who had IMRT(total dose: 70Gy) Using ViewRay MRIdian System(ViewRay, ViewRay Inc., Cleveland, OH, USA) The treatment plans were made on the same CT images to compare with the plan quality according to adaptive plan, and the Eclipse(Ver 10.0.42, Varian, USA) was used. After registrate the 5 treatment MR images to the CT images for treatment plan to analyze the interfraction changes of organ, we measured the dose volume histogram and the changes of the absolute volume for each organ by appling the first treatment plan to each image. Over 5 fractions, the total dose for PTV was $V_{36.25}$ Gy $${\geq_-}$$ 95%. To confirm that the prescription dose satisfies the SBRT dose limit for prostate, we measured $V_{100%}$, $V_{95%}$, $V_{90%}$ for CTV and $V_{100%}$, $V_{90%}$, $V_{80%}$ $V_{50%}$ of rectum and bladder. Results : All dose average value of CTV, rectum and bladder satisfied dose limit, but there was a case that exceeded dose limit more than one after analyzing the each image of treatment. After measuring the changes of absolute volume comparing the MR image of the first treatment plan with the one of the interfraction treatment, the difference values were maximum 1.72 times at rectum and maximum 2.0 times at bladder. In case of rectum, the expected values were planned under the dose limit, on average, $V_{100%}=0.32%$, $V_{90%}=3.33%$, $V_{80%}=7.71%$, $V_{50%}=23.55%$ in the first treatment plan. In case of rectum, the average of absolute volume in first plan was 117.9 cc. However, the average of really treated volume was 79.2 cc. In case of CTV, the 100% prescription dose area didn't satisfy even though the margin for PTV was 5 mm because of the variation of rectal and bladder volume. Conclusion : There was no case that the value from average of five fractions is over the dosimetric limits. However, dosimetric errors of rectum and bladder in each fraction was significant. Therefore, the precise delivery is needed in case of prostate SBRT. The real-time tracking and adaptive plan is necessary to meet the precision delivery.

  • PDF

Implementation of integrated monitoring system for trace and path prediction of infectious disease (전염병의 경로 추적 및 예측을 위한 통합 정보 시스템 구현)

  • Kim, Eungyeong;Lee, Seok;Byun, Young Tae;Lee, Hyuk-Jae;Lee, Taikjin
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.69-76
    • /
    • 2013
  • The incidence of globally infectious and pathogenic diseases such as H1N1 (swine flu) and Avian Influenza (AI) has recently increased. An infectious disease is a pathogen-caused disease, which can be passed from the infected person to the susceptible host. Pathogens of infectious diseases, which are bacillus, spirochaeta, rickettsia, virus, fungus, and parasite, etc., cause various symptoms such as respiratory disease, gastrointestinal disease, liver disease, and acute febrile illness. They can be spread through various means such as food, water, insect, breathing and contact with other persons. Recently, most countries around the world use a mathematical model to predict and prepare for the spread of infectious diseases. In a modern society, however, infectious diseases are spread in a fast and complicated manner because of rapid development of transportation (both ground and underground). Therefore, we do not have enough time to predict the fast spreading and complicated infectious diseases. Therefore, new system, which can prevent the spread of infectious diseases by predicting its pathway, needs to be developed. In this study, to solve this kind of problem, an integrated monitoring system, which can track and predict the pathway of infectious diseases for its realtime monitoring and control, is developed. This system is implemented based on the conventional mathematical model called by 'Susceptible-Infectious-Recovered (SIR) Model.' The proposed model has characteristics that both inter- and intra-city modes of transportation to express interpersonal contact (i.e., migration flow) are considered. They include the means of transportation such as bus, train, car and airplane. Also, modified real data according to the geographical characteristics of Korea are employed to reflect realistic circumstances of possible disease spreading in Korea. We can predict where and when vaccination needs to be performed by parameters control in this model. The simulation includes several assumptions and scenarios. Using the data of Statistics Korea, five major cities, which are assumed to have the most population migration have been chosen; Seoul, Incheon (Incheon International Airport), Gangneung, Pyeongchang and Wonju. It was assumed that the cities were connected in one network, and infectious disease was spread through denoted transportation methods only. In terms of traffic volume, daily traffic volume was obtained from Korean Statistical Information Service (KOSIS). In addition, the population of each city was acquired from Statistics Korea. Moreover, data on H1N1 (swine flu) were provided by Korea Centers for Disease Control and Prevention, and air transport statistics were obtained from Aeronautical Information Portal System. As mentioned above, daily traffic volume, population statistics, H1N1 (swine flu) and air transport statistics data have been adjusted in consideration of the current conditions in Korea and several realistic assumptions and scenarios. Three scenarios (occurrence of H1N1 in Incheon International Airport, not-vaccinated in all cities and vaccinated in Seoul and Pyeongchang respectively) were simulated, and the number of days taken for the number of the infected to reach its peak and proportion of Infectious (I) were compared. According to the simulation, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days when vaccination was not considered. In terms of the proportion of I, Seoul was the highest while Pyeongchang was the lowest. When they were vaccinated in Seoul, the number of days taken for the number of the infected to reach at its peak was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. When they were vaccinated in Pyeongchang, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. Based on the results above, it has been confirmed that H1N1, upon the first occurrence, is proportionally spread by the traffic volume in each city. Because the infection pathway is different by the traffic volume in each city, therefore, it is possible to come up with a preventive measurement against infectious disease by tracking and predicting its pathway through the analysis of traffic volume.