• Title/Summary/Keyword: Real-time signal control algorithm

Search Result 232, Processing Time 0.023 seconds

A Real-time Traffic Signal Control Algorithm based on Travel Time and Occupancy Rate (통행시간과 점유율 기반의 실시간 신호운영 알고리즘)

  • Park, Soon-Yong;Jeong, Young-Je
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.8
    • /
    • pp.671-680
    • /
    • 2016
  • This research suggested a new real-time traffic signal control algorithm using fusion data of the travel time and the occupancy rate. This research applied the travel time data of traffic information system to traffic signal operation, and developed the signal control process using the degree of saturation that was estimated from the travel time data. This algorithm estimates a queue length from the travel time based on a deterministic delay model, and includes the process to change from the queue length to the degree of saturation. In addition, this model can calculate the traffic signal timings using fusion data of the travel time and the occupancy rate based on the saturation degree. The micro simulation analysis was conducted for effectiveness evaluation. We checked that the average delay decreased by up to 27 percent. In addition, we checked that this signal control algorithm could respond to a traffic condition of oversaturation and detector breakdown effectively and usefully. This research has important contribution to apply the traffic information system to traffic signal operation sectors.

A study on DSP based power analyzing and control system by analysis of 3-dimensional space current co-ordinates (3차원 전류좌표계 해석법에 의한 DSP 전력분석 제어장치에 관한 연구)

  • 임영철;정영국;나석환;최찬학;장영학;양승학
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.543-552
    • /
    • 1996
  • The goal of this paper is to developed a DSP based power analyzing and control system by 3-Dimensional (3-D) space current co-ordinates. A developed system is made up of 486-PC and DSP (Digital Signal Processor) board, Active Power Filter, Non-linear thyristor load, and Power analyzing and control program for Windows. Power is analyzed using signal processing techniques based on the correlation between voltage and current waveforms. Since power analysis algorithm is performed by DSP, power analysis is achieved in real-time even under highly dynamic nonlinear loading conditions. Combining control algorithm with power analysis algorithm is performed by DSP, power analysis is achieved in real-time even under highly dynamic nonlinear loading conditions. Combining control algorithm with power analysis algorithm, flexibility of the proposed system which has both power analysis mode and control mode, is greatly enhanced. Non-active power generated while speed of induction motor is controlled by modulating firing angle of thyristor converter, is compensated by Active Power Filter for verifying a developed system. Power analysis results, before/after compensation, are numerically obtained and evaluated. From these results, various graphic screens for time/frequency/3-D current co-ordinate system are displayed on PC. By real-time analysis of power using a developed system, power quality is evaluated, and compared with that of conventional current co-ordinate system. (author). refs., figs. tabs.

  • PDF

Application and Evaluation of a Traffic Signal Control Algorithm based on Travel Time Information for Coordinated Arterials (연동교차로를 위한 통행시간기반 신호제어 알고리즘의 현장 적용 및 평가)

  • Jeong, Yeong-Je;Kim, Yeong-Chan
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.179-187
    • /
    • 2009
  • This study develops a real-time signal control algorithm based on sectional travel times and includes a field test and evaluation. The objective function of the signal control algorithm is the equalization of delay of traffic movements, and the main process is calculating dissolved time of the queue and delay using the sectional travel time and detection time of individual vehicles. Then this algorithm calculates the delay variation and a targeted red time and calculates the length of the cycle and phase. A progression factor from the US HCM was applied as a method to consider the effect of coordinating the delay calculation, and this algorithm uses the average delay and detection time of probe vehicles, which were collected during the accumulated cycle for a stabile signal control. As a result of the field test and evaluation through the application of the traffic signal control algorithm on four consecutive intersections at 400m intervals, reduction of delay and an equalization effect of delay against TOD control were confirmed using the standard deviation of delay by traffic movements. This study was conducted to develop a real-time traffic signal control algorithm based on sectional travel time, using general-purpose traffic information detectors. With the current practice of disseminating ubiquitous technology, the aim of this study was a fundamental change of the traffic signal control method.

Control of Three Phase VSI using Fundamental Data of the Carrier and Signal for Reducing the THO (반송파와 신호파의 기본 데이터를 이용한 3상 전압형 인버터의 THD 저감 제어)

  • Kim, Yeong-Min;Hwang, Jong-Sun;Kim, Jong-Man;Park, Hyun-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.09a
    • /
    • pp.34-37
    • /
    • 2001
  • This research suggested the new algorithm controlled by micro processor which is already stored by various PWM form of output voltage by using fundamental data of the carrier and signal. The determined PWM pattern is not concerned with the signal wave form and the new algorithm can obtain the desired pulse width by synchronous of carrier. The PWM wave can be controlled with real time by using extra hardware and digital software and to speed up program processing, the control signals to switch the power semi-conductor of three phase PWM inverter, simultaneously use the output signal by microprocessor and extra hardware, and control signal by software. In the end, this method was proved by applying to Three phase voltage source inverter.

  • PDF

Real Time FECG Monitoring System Using Digital Signal Process (디지탈 신호처리에 의한 실시간 태아 심전도 감시 시스템에 관한 연구 I)

  • 김남현;유선국;이건기;윤대희;김원기;박상희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.722-724
    • /
    • 1988
  • In this study, 8 ch. FECG signal storage system with general cassette recorder and amplifier is developed, and simulated LMS algorithm. In future we construct real time FECG monitor system that is used digital signal processor.

  • PDF

Optimization-based Real-time Human Elbow Joint Angle Extraction Method (최적화 기반 인간 팔꿈치 관절각 실시간 추출 방법)

  • Choi, Young-Jin;Yu, Hyeon-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1278-1285
    • /
    • 2008
  • An optimization-based real-time joint angle extraction method of human elbow is proposed by processing the biomedical signal of surface EMG (electromyogram) measured at the center point of biceps brachii. The EMG signal is known as non-stationary (time-varying) signal, but we assume that it is quasi-stationary because a physical or physiological system has limitations in the rate at which it can change its characteristics. Based on the assumption, a pre-processing method to obtain pre-angle values from raw EMG signal is firstly suggested, and then an optimization method to minimize the error between the pre-angle and real joint angle is proposed in this paper. Finally, we suggest the experimental results showing the effectiveness of the proposed algorithm.

Traffic Signal Control Algorithm for Isolated Intersections Based on Travel Time (독립교차로의 통행시간 기반 신호제어 알고리즘)

  • Jeong, Youngje;Park, Sang Sup;Kim, Youngchan
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.6
    • /
    • pp.71-80
    • /
    • 2012
  • This research suggested a real-time traffic signal control algorithm using individual vehicle travel times on an isolated signal intersection. To collect IDs and passing times from individual vehicles, space-based surveillance systems such as DSRC were adopted. This research developed models to estimate arrival flow rates, delays, and the change rate in delay, by using individual vehicle's travel time data. This real-time signal control algorithm could determine optimal traffic signal timings that minimize intersection delay, based on a linear programming. A micro simulation analysis using CORSIM and RUN TIME EXTENSION verified saturated intersection conditions, and determined the optimal traffic signal timings that minimize intersection delay. In addition, the performance of algorithm varying according to market penetration was examined. In spite of limited results from a specific scenario, this algorithm turned out to be effective as long as the probe rate exceeds 40 percent. Recently, space-based traffic surveillance systems are being installed by various projects, such as Hi-pass, Advanced Transportation Management System (ATMS) and Urban Transportation Information System (UTIS) in Korea. This research has an important significance in that the propose algorithm is a new methodology that accepts the space-based traffic surveillance system in real-time signal operations.

The Short Time Spectra Analysis System Using The Complex LMS Algorithm and It's Applications

  • Umemoto, Toshitaka;Fujisawa, Shoichiro;Yoshida, Takeo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.58-63
    • /
    • 1998
  • B.Widrow established fundamental relations between the least-mean-square (LMS) algorithm and the digital Fourier transform[1]. By extending these relations, we proposed the short time spectra analysis system using the LMS algorithm[2]. In that paper, we used the normal LMS algorithm on the thought of dealing with only real analytical signal. This algorithm minimizes the real mean-square by recursively altering the complex weight vector at each sampling instant. But, the short time spectra analysis sometimes deals with the complex signal that is outputted from complex analog filter. So, in order to optimize and develop this methods, furthermore it is necessary to derive an algorithm for the complex analytical signal. In this paper, we first discuss the new adaptive system for the spectra analysis using the complex LMS algorithm and then derive convergence condition, time constant of coefficient adjustment and frequency resolution by extending the discussion. Finally, the effectiveness of the proposed method is experimentally demonstrated by applying it to the measurement of transfer performance on complex analog filter.

  • PDF

Study on the Operational Effect of Real-time Traffic Signal Control Using the Data from Smart Instersections (스마트교차로 데이터를 활용한 실시간 교통신호제어 운영 효과 분석)

  • Sangwook Lee;Bobae Jeon;Seok Jin Oh;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.4
    • /
    • pp.48-62
    • /
    • 2023
  • Recently, smart intersections have been installed in many intelligent transportation system projects, but few cases use them for traffic signal operations besides traffic volume collection and statistical analysis. In order to respond to chronic traffic congestion, it is necessary to implement efficient signal operations using data collected from smart intersections. Therefore, this study establishes a procedure for operating a real-time traffic signal control algorithm using smart intersection data for efficient traffic signal operations and improving the existing algorithm. Effect analysis confirmed that intersection delays are reduced and the section speed improves when the offset is adjusted.

Implementation of a real-time neural controller for robotic manipulator using TMS 320C3x chip (TMS320C3x 칩을 이용한 로보트 매뉴퓰레이터의 실시간 신경 제어기 실현)

  • 김용태;한성현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.65-68
    • /
    • 1996
  • Robotic manipulators have become increasingly important in the field of flexible automation. High speed and high-precision trajectory tracking are indispensable capabilities for their versatile application. The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. This paper presents a new approach to the design of neural control system using digital signal processors in order to improve the precision and robustness. The TMS32OC31 is used in implementing real time neural control to provide an enhanced motion control for robotic manipulators. In this control scheme, the networks introduced are neural nets with dynamic neurons, whose dynamics are distributed over all the, network nodes. The nets are trained by the distributed dynamic back propagation algorithm. The proposed neural network control scheme is simple in structure, fast in computation, and suitable for implementation of real-time, control. Performance of the neural controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF