• Title/Summary/Keyword: Real-time polymerase chain reaction (PCR)

Search Result 465, Processing Time 0.03 seconds

Developing species-specific quantitative real-time polymerase chain reaction primers for detecting Lautropia mirabilis

  • Park, Soon-Nang;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.46 no.3
    • /
    • pp.140-145
    • /
    • 2021
  • This study aimed to develop Lautropia mirabilis-specific quantitative real-time polymerase chain reaction (qPCR) primers based on the sequence of DNA-directed RNA polymerase subunit beta gene. The PrimerSelect program was used in designing of the qPCR primers, RTLam-F4 and RTLam-R3. The specificity of the qPCR primers were performed by conventional PCR with 37 strains of 37 oral bacterial species, including L. mirabilis. The sensitivity of the primers was determined by qPCR with the serial dilution of purified genomic DNA of L. mirabilis KCOM 3484, ranged from 4 ng to 4 fg. The data showed that the qPCR primers could detect only L. mirabilis strains and as little as 40 fg of genome DNA of L. mirabilis KCOM 3484. These results indicate that this qPCR primer pair (RTLam-F4/RTLam-R3) may be useful for species-specific detection of L. mirabilis in epidemiological studies of oral bacterial infectious diseases such as periodontal disease.

Evaluation of a novel TaqMan probe-based real-time polymerase chain reaction (PCR) assay for detection and quantitation of red sea bream iridovirus

  • Kim, Guk Hyun;Kim, Min Jae;Choi, Hee Ju;Koo, Min Ji;Kim, Min Jeong;Min, Joon Gyu;Kim, Kwang Il
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.11
    • /
    • pp.351-359
    • /
    • 2021
  • The red sea bream iridovirus (RSIV) belonging to genus Megalocytivirus is responsible for red sea bream iridoviral disease (RSIVD) in marine and freshwater fishes. Although several diagnostic assays for RSIV have been developed, diagnostic sensitivity (DSe) and specificity (DSp) of real-time polymerase chain reaction (PCR) assays are not yet evaluated. In this study, we developed a TaqMan probe-based real-time PCR method and evaluated its DSe and DSp. To detect RSIV, the probe and primers were designed based on consensus sequences of the major capsid protein (MCP) genes from megalocytiviruses including RSIV, infectious spleen and kidney necrosis virus (ISKNV), and turbot reddish body iridovirus (TRBIV). The probe and primers were shown to be specific for RSIV, ISKNV, and TRBIV-types megalocytiviruses. A 95% limit of detection (LOD95%) was determined to be 5.3 viral genome copies/µL of plasmid DNA containing the MCP gene from RSIV. The DSe and DSp of the developed real-time PCR assay for field samples (n = 112) were compared with those of conventional PCR assays and found to be 100% and 95.2%, respectively. The quantitative results for SYBR Green and TaqMan probe-based real-time PCR were not significantly different. The TaqMan probe-based real-time PCR assay for RSIV may be used as an appropriate diagnostic tool for qualitative and quantitative analysis.

Sequential use of real-time polymerase chain reaction and enzyme-linked immunosorbent assay techniques verifies adulteration of fermented sausages with chicken meat

  • Benli, Hakan;Barutcu, Elif
    • Animal Bioscience
    • /
    • v.34 no.12
    • /
    • pp.1995-2002
    • /
    • 2021
  • Objective: Detection of adulteration in processed meats is an important issue for some countries due to substitution of beef with a cheaper source of protein like poultry. In this study, the presence of chicken meat was investigated using real-time polymerase chain reaction (real-time PCR) and enzyme-linked immunosorbent assay (ELISA) techniques to verify adulteration of fermented sausage samples. Methods: A total of 60 commercial samples were collected from 20 establishments in three replicates including 10 fermented sausage manufacturers and 10 butchers to investigate the presence of chicken meat with the sequential use of real-time PCR and ELISA techniques. In addition, pH, moisture content, water activity and color values of the samples were determined. Results: Both real-time PCR and ELISA showed agreement on the presence or absence of chicken meat in 55 out of 60 fermented sausage samples and chicken meat was identified with both methods in 16 samples. Five samples produced inconsistent results for the presence of chicken meat in the first run. Nevertheless, the presence of chicken meat was verified with both methods when these samples were analyzed for the second time. In addition, the average physico-chemical values of the fermented sausage samples tested positive for chicken meat were not significantly different from some of those fermented sausage samples tested negative for the chicken meat. Conclusion: The sequential use of real-time PCR and ELISA techniques in fermented sausages could be beneficial for the government testing programs to eliminate false negatives for detection of adulteration with chicken meat. Furthermore, consumers should not rely on some of the quality cues including color to predict the adulteration of fermented sausages with chicken meat since there were no statistical differences among some of the samples tested positive and negative for chicken meat.

Peptoniphilus mikwangii-specific quantitative real-time polymerase chain reaction primers

  • Park, Soon-Nang;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.44 no.3
    • /
    • pp.96-100
    • /
    • 2019
  • The purpose of this study was to develop Peptoniphilus mikwangii-specific quantitative real-time polymerase chain reaction (qPCR) primers based on the 16S ribosomal RNA (16S rDNA) gene. The specificity of the primers was determined by conventional PCR using 29 strains of 27 oral bacterial species including P. mikwangii. The sensitivity of the primers was determined by qPCR using the purified genomic DNA of P. mikwangii KCOM $1628^T$ (40 ng to 4 fg). The data showed that the qPCR primers (RTB134-F4/RTB134-R4) could detect P. mikwangii strains exclusively and as little as 40 fg of the genomic DNA of P. mikwangii KCOM $1628^T$. These results suggest that the developed qPCR primer pair can be useful for detecting P. mikwangii in epidemiological studies of oral bacterial infectious diseases.

Real-time Reverse Transcription Polymerase Chain Reaction Using Total RNA Extracted from Nasopharyngeal Aspirates for Detection of Pneumococcal Carriage in Children (소아에서 폐렴구균 집락률 측정을 위해 비인두 흡인 물의 총 RNA를 이용한 실시간 중합효소 연쇄반응법)

  • Kim, Young Kwang;Lee, Kyoung Hoon;Yun, Ki Wook;Lee, Mi Kyung;Lim, In Seok
    • Pediatric Infection and Vaccine
    • /
    • v.23 no.3
    • /
    • pp.194-201
    • /
    • 2016
  • Purpose: Monitoring pneumococcal carriage rates is important. We developed and evaluated the accuracy of a real-time reverse transcription polymerase chain reaction (RT-PCR) protocol for the detection of Streptococcus pneumoniae. Methods: In October 2014, 157 nasopharyngeal aspirates were collected from patients aged <18 years admitted to Chung-Ang University Hospital. We developed and evaluated a real-time PCR method for detecting S. pneumoniae by comparing culture findings with the results of the real-time PCR using genomic DNA (gDNA). Of 157 samples, 20 specimens were analyzed in order to compare the results of cultures, real-time PCR, and real-time RT-PCR. Results: The concordance rate between culture findings and the results of real-time PCR was 0.922 (P<0.01, Fisher exact test). The 133 culture-negative samples were confirmed to be negative for S. pneumoniae using real-time PCR. Of the remaining 24 culture-positive samples, 21 were identified as S. pneumonia -positive using real-time PCR. The results of real-time RT-PCR and real-time PCR from 20 specimens were consistent with culture findings for all S. pneumoniae -positive samples except one. Culture and real-time RT-PCR required 26.5 and 4.5 hours to perform, respectively. Conclusions: This study established a real-time RT-PCR method for the detection of pneumococcal carriage in the nasopharynx. Real-time RT-PCR is an accurate, convenient, and time-saving method; therefore, it may be useful for collecting epidemiologic data regarding pneumococcal carriage in children.

Fabrication of a polymerase chain reaction micro-reactor using infrared heating

  • Im, Ki-Sik;Eun, Duk-Soo;Kong, Seong-Ho;Shin, Jang-Kyoo;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.337-342
    • /
    • 2005
  • A silicon-based micro-reactor to amplify small amount of deoxyribonucleic acid (DNA) has been fabricated using micro-electro-mechanical systems (MEMS) technology. Polymerase chain reaction (PCR) of DNA requires a precise and rapid temperature control. A Pt sensor is integrated directly in the chamber for real-time temperature measurement and an infrared lamp is used as external heating source for non-contact and rapid heating. In addition to the real-time temperature sensing, PCR needs a rapid thermocycling for effective PCR. For a fast thermal response, the thermal mass of the reactor chamber is minimized by removal of bulk silicon volume around the reactor using double-side KOH etching. The transparent optical property of silicon in the infrared wavelength range provides an efficient absorption of thermal energy into the reacting sample without being absorbed by silicon reactor chamber. It is confirmed that the fabricated micro-reactor could be heated up in less than 30 sec to the denaturation temperature by the external infrared lamp and cooled down in 30 sec to the annealing temperature by passive cooling.

Determination of Sperm Sex Ratio in Bovine Semen Using Multiplex Real-time Polymerase Chain Reaction

  • Khamlor, Trisadee;Pongpiachan, Petai;Sangsritavong, Siwat;Chokesajjawatee, Nipa
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.10
    • /
    • pp.1411-1416
    • /
    • 2014
  • Gender selection is important in livestock industries; for example, female calves are required in the dairy industry. Sex-sorted semen is commonly used for the production of calves of the desired gender. However, assessment of the sex ratio of the sorted semen is tedious and expensive. In this study, a rapid, cost effective and reliable method for determining the sex ratio was developed using a multiplex real-time polymerase chain reaction (PCR) assay. In this assay, the X and Y chromosome-specific markers, i.e., bovine proteolipid protein (PLP) gene and sex-determining region Y (SRY) were simultaneously quantified in a single tube. The multiplex real-time PCR assay was shown to have high amplification efficiencies (97% to 99%) comparable to the separated-tube simplex real-time PCR assay. The results obtained from both assays were not significantly different (p>0.05). The multiplex assay was validated using reference DNA of known X ratio (10%, 50%, and 90%) as templates. The measured %X in semen samples were the same within 95% confidence intervals as the expected values, i.e., >90% in X-sorted semen, <10% in Y-sorted semen and close to 50% in the unsorted semen. The multiplex real-time PCR assay as shown in this study can thus be used to assess purity of sex-sorted semen.

Improved Detection of ${\gamma}-Irradiated$ Vibrio vulnificus after Heat and Cold Shock Treatment by Using Ethidium Monoazide Real-time PCR

  • Lee, Jung-Lim;Levin, Robert E.
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.788-792
    • /
    • 2009
  • Gamma $({\gamma})-irradiation$ can be used to control pathogens such as Vibrio vulnificus in seafood. The effects of irradiation on microbial cell populations (%) have been studied in order to develop detection methods for irradiated foods. The method used in this study was ethidium bromide monoazide (EMA) real-time polymerase chain reaction (PCR), using V. vulnificus specific primer, EMA, and $SYBR^{(R)}$ Green to discriminate between ${\gamma}-irradiated$ and non-irradiated cells. Confocal microscope examination showed that ${\gamma}-irradiation$ damaged portions of the cell membrane, allowing EMA to penetrate cells of irradidated V. vulnificus. ${\gamma}-Irradiation$ at 1.08 KGy resulted in log reduction ($-1.15{\pm}0.13$ log reduction) in genomic targets derived from EMA real-time PCR. The combination cold/heat shock resulted in the highest ($-1.74{\pm}0.1$ log reduction) discrimination of dead irradiated V. vulnificus by EMA real-time PCR.

Enhancement of Efficiency for Polymerase Chain Reaction Using Nanoparticle-Coated Graphene Oxide

  • Ju, Min-Yeong;Baek, Seung-Hun;Kim, Eun-Ju;Nguyen, Nguyen Le Thao;Park, Chan-Yeong;Park, Tae-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.375.1-375.1
    • /
    • 2016
  • Polymerase chain reaction (PCR) has revolutionized genetics and become one of the most popular techniques in modern biological and medical sciences. It can be used not only as an in vitro DNA amplification method but also used in many bioassay applications. The PCR can be used to exponentially produce a large number of DNA copies from a small quantity of DNA molecules in a few hours. However, as unwanted DNA fragments are also often manufactured, the amplification efficiency of PCR is decreased. To overcome this limitation, several nanomaterials have been employed to increase the specificity of the PCR reaction. Recently, graphene has attracted a great interest for its excellent electron transfer, thermal and biocompatibility. Especially, gold nanoparticle-coated graphene oxide (GO/AuNPs) led to enhance electron and thermal transfer rate and low-charge transfer resistance. Therefore, we report the development of a demonstration for the PCR efficiency using a large-scale production of the GO and combination of gold nanoparticles. Because a thermal conductivity is an important factor for improving the PCR efficiency in different DNA polymerases and different size samples. When PCR use GO/AuNPs, the result of transmission electron microscopy and real-time quantitative PCR (qPCR) showed an enhanced PCR efficiency. We have demonstrated that GO/AuNPs would be simply outperformed for enhancing the specificity and efficiency of DNA amplification procedure.

  • PDF

Event-specific Detection Methods for Genetically Modified Maize MIR604 Using Real-time PCR

  • Kim, Jae-Hwan;Kim, Hae-Yeong
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1118-1123
    • /
    • 2009
  • Event-specific real-time polymerase chain reaction (PCR) detection method for genetically modified (GM) maize MIR604 was developed based on integration junction sequences between the host plant genome and the integrated transgene. In this study, 2 primer pairs and probes were designed for specific amplification of 100 and 111 bp DNA fragments from the zSSIIb gene (the maize endogenous reference gene) and MIR604. The quantitative method was validated using 3 certified reference materials (CRMs) with levels of 0.1, 1, and 10% MIR604. The method was also assayed with 14 different plants and other GM maize. No amplification signal was observed in real-time PCR assays with any of the species tested other than MIR604 maize. As a result, the bias from the true value and the relative deviation for MIR604 was within the range from 0 to 9%. Precision, expressed as relative standard deviation (RSD), varied from 2.7 to 10% for MIR604. Limits of detections (LODs) of qualitative and quantitative methods were all 0.1%. These results indicated that the event-specific quantitative PCR detection system for MIR604 is accurate and useful.