• Title/Summary/Keyword: Real-time operation systems

Search Result 668, Processing Time 0.03 seconds

The Study of Security Life Cycler Energy Service Platform or Universal Middleware (유니버설미들웨어상의 생명주기기반 보안에너지 서비스플랫폼 연구)

  • Lee, Hae-Jun;Hwang, Chi-Gon;Yoon, Chang-Pyo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.291-293
    • /
    • 2017
  • Security services that support electric energy service gateway require relatively high reliability. In particular, the application services that accompany communications and data are run organically. Each of the security services should support a secure service platform that supports a secure, scalable life cycle for existing services which should be extends security layer of Universal Middleware such as OSGi platform. In this convergence platform, it is the study of security transfer modular services that allow independent life cycle management of systems through Universal middleware. First, It is modular in terms of energy consumption service and data, enabling real-time operation, communications, remote management and applications. Second, the life cycle of the secure module to support the life cycle of secure, delete, start and updating of the security module by applying the security policy module layer concept. It is modular in terms of power generation and accountability, enabling us to distinguish between reliability and accountability in a large volume of data models in the smart grid, the service was intended to be standardized and applied to the security service platform.

  • PDF

Design and Implementation of a Large Scale Qualification Management System for Performance Improvement Through the Use of a WCBT(Web and Computer based Test) (WCBT를 이용한 대규모 자격관리 성능개선 시스템의 설계 및 구현)

  • Chang, Young-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.2
    • /
    • pp.67-78
    • /
    • 2008
  • The purpose of this paper is to discuss the design and implementation of a WCBT(Web and Computer based Test). The WCBT combines the strengths of both a WBT(Web-based test) and a CBT(Computer-based test) on the basis of efficiency and stability. The current assessment system, considered an important management tool in the construction and operation of a total management system for the national technical qualification, has some unstable elements with regard to system load and stability. The proposed system's technological aspects have been tested through a basic simulation pilot program. The pilot program will be expanded to include the local Chamber of Commerce and Industry because the stability of the system was proved through its application to the real-time national technical examination of KCCI (Korea Chamber of Commerce and Industry). The WCBT system has shown great efficiency in terms of system load, and has solved frequent communication problems which have occurred through the use of foreign qualifying examinations. The server and client systems of the WCBT have been given good evaluations with regard to the convenience of their use and the management system for operators and supervisors.

  • PDF

Power Compensator Control for Improving Unbalanced Power of AC Electric Railway (교류전기철도 불평형 전력 개선을 위한 전력보상장치 제어)

  • Woo, Jehun;Jo, Jongmin;Lee, Tae-Hoon;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.213-218
    • /
    • 2020
  • In this study, we propose a control algorithm to reduce the unbalanced characteristics of a three-phase system power caused by the unbalanced load of the AC electric railway. Then, we verify its performance through the design of a power compensator and experiments applying it. Like electric railway systems, a Scott transformer is applied, and the load and single-phase back-to-back converters are connected to the M-phase and T-phase outputs. The back-to-back converter monitors the difference in active power between the unbalanced loads in real-time and compensates for the power by using bidirectional characteristics. The active power is performed through PI control in the synchronous coordinate system, and DC link overall voltage and voltage balancing control are controlled jointly by M-phase and T-phase converters to improve the responsiveness of the system. To verify the performance of the proposed power compensation device, an experiment was performed under the condition that M-phase 5 kW and T-phase 1 kW unbalanced load. As a result of the experiment, the unbalance rate of the three-phase current after the operation of the power compensator decreases by 58.66% from 65.04% to 6.38%, and the excellent performance of the power compensator proposed in this study is verified.

Development of Automated Guidance Tracking Sensor System Based on Laser Distance Sensors

  • Kim, Joon-Yong;Kim, Hak-Jin;Shim, Sung-Bo;Park, Soo-Hyun;Kim, Jung-Hun;Kim, Young-Joo
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.319-327
    • /
    • 2016
  • Purpose: Automated guidance systems (AGSs) for mobile farm machinery have several advantages over manual operation in the crop production industry. Many researchers and companies have tried to develop such a system. However, it is not easy to evaluate the performance of an AGS because there is no established device used to evaluate it that complies with the ISO 12188 standard. The objective of this study was to develop a tracking sensor system using five laser distance measurement sensors. Methods: One sensor-for long-range distance measurement-was used to measure travel distance and velocity. The other four sensors-for mid-range distance measurement-were used to measure lateral deviation. Stationary, manual driving, and A-B line tests were conducted, and the results were compared with the real-time kinematic differential global positioning system (RTK-DGPS) signal used by the AGS. Results: For the stationary test, the average error of the tracking sensor system was 1.99 mm, and the average error of the RTK-DGPS was 15.19 mm. For the two types of driving tests, the data trends were similar. A comparison of the changes in lateral deviation showed that the data stability of the developed tracking system was better. Conclusions: Although the tracking system was not capable of measuring long travel distances under strong sunlight illumination because of the long-range sensor's limitations, this dilemma could be overcome using a higher-performance sensor.

A full-Hardwired Low-Power MPEG4@SP Video Encoder for Mobile Applications (모바일 향 저전력 동영상 압축을 위한 고집적 MPEG4@SP 동영상 압축기)

  • Shin, Sun Young;Park, Hyun Sang
    • Journal of Broadcast Engineering
    • /
    • v.10 no.3
    • /
    • pp.392-400
    • /
    • 2005
  • Highly integrated MPEG-4@SP video compression engine, VideoCore, is proposed for mobile application. The primary components of video compression require the high memory bandwidth since they access the external memory frequently. They include motion estimation, motion compensation, quantization, discrete cosine transform, variable length coding, and so on. The motion estimation processor adopted in VideoCore utilizes the small-size local memories such that the video compression system accesses external memory as less frequently as possible. The entire video compression system is divided into two distinct sub-systems: the integer-unit motion estimation part and the others, and both operate concurrently in a pipelined architecture. Thus the VideoCore enables the real-time high-quality video compression with a relatively low operation frequency.

Wireless sensor networks for permanent health monitoring of historic buildings

  • Zonta, Daniele;Wu, Huayong;Pozzi, Matteo;Zanon, Paolo;Ceriotti, Matteo;Mottola, Luca;Picco, Gian Pietro;Murphy, Amy L.;Guna, Stefan;Corra, Michele
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.595-618
    • /
    • 2010
  • This paper describes the application of a wireless sensor network to a 31 meter-tall medieval tower located in the city of Trento, Italy. The effort is motivated by preservation of the integrity of a set of frescoes decorating the room on the second floor, representing one of most important International Gothic artworks in Europe. The specific application demanded development of customized hardware and software. The wireless module selected as the core platform allows reliable wireless communication at low cost with a long service life. Sensors include accelerometers, deformation gauges, and thermometers. A multi-hop data collection protocol was applied in the software to improve the system's flexibility and scalability. The system has been operating since September 2008, and in recent months the data loss ratio was estimated as less than 0.01%. The data acquired so far are in agreement with the prediction resulting a priori from the 3-dimensional FEM. Based on these data a Bayesian updating procedure is employed to real-time estimate the probability of abnormal condition states. This first period of operation demonstrated the stability and reliability of the system, and its ability to recognize any possible occurrence of abnormal conditions that could jeopardize the integrity of the frescos.

3D Reconstruction of Structure Fusion-Based on UAS and Terrestrial LiDAR (UAS 및 지상 LiDAR 융합기반 건축물의 3D 재현)

  • Han, Seung-Hee;Kang, Joon-Oh;Oh, Seong-Jong;Lee, Yong-Chang
    • Journal of Urban Science
    • /
    • v.7 no.2
    • /
    • pp.53-60
    • /
    • 2018
  • Digital Twin is a technology that creates a photocopy of real-world objects on a computer and analyzes the past and present operational status by fusing the structure, context, and operation of various physical systems with property information, and predicts the future society's countermeasures. In particular, 3D rendering technology (UAS, LiDAR, GNSS, etc.) is a core technology in digital twin. so, the research and application are actively performed in the industry in recent years. However, UAS (Unmanned Aerial System) and LiDAR (Light Detection And Ranging) have to be solved by compensating blind spot which is not reconstructed according to the object shape. In addition, the terrestrial LiDAR can acquire the point cloud of the object more precisely and quickly at a short distance, but a blind spot is generated at the upper part of the object, thereby imposing restrictions on the forward digital twin modeling. The UAS is capable of modeling a specific range of objects with high accuracy by using high resolution images at low altitudes, and has the advantage of generating a high density point group based on SfM (Structure-from-Motion) image analysis technology. However, It is relatively far from the target LiDAR than the terrestrial LiDAR, and it takes time to analyze the image. In particular, it is necessary to reduce the accuracy of the side part and compensate the blind spot. By re-optimizing it after fusion with UAS and Terrestrial LiDAR, the residual error of each modeling method was compensated and the mutual correction result was obtained. The accuracy of fusion-based 3D model is less than 1cm and it is expected to be useful for digital twin construction.

A Study on the Performance of Enhanced Deep Fully Convolutional Neural Network Algorithm for Image Object Segmentation in Autonomous Driving Environment (자율주행 환경에서 이미지 객체 분할을 위한 강화된 DFCN 알고리즘 성능연구)

  • Kim, Yeonggwang;Kim, Jinsul
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.9-16
    • /
    • 2020
  • Recently, various studies are being conducted to integrate Image Segmentation into smart factory industries and autonomous driving fields. In particular, Image Segmentation systems using deep learning algorithms have been researched and developed enough to learn from large volumes of data with higher accuracy. In order to use image segmentation in the autonomous driving sector, sufficient amount of learning is needed with large amounts of data and the streaming environment that processes drivers' data in real time is important for the accuracy of safe operation through highways and child protection zones. Therefore, we proposed a novel DFCN algorithm that enhanced existing FCN algorithms that could be applied to various road environments, demonstrated that the performance of the DFCN algorithm improved 1.3% in terms of "loss" value compared to the previous FCN algorithms. Moreover, the proposed DFCN algorithm was applied to the existing U-Net algorithm to maintain the information of frequencies in the image to produce better results, resulting in a better performance than the classical FCN algorithm in the autonomous environment.

VDI deployment and performance analysys for multi-core-based applications (멀티코어 기반 어플리케이션 운용을 위한 데스크탑 가상화 구성 및 성능 분석)

  • Park, Junyong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1432-1440
    • /
    • 2022
  • Recently, as Virtual Desktop Infrastructure(VDI) is widely used not only in office work environments but also in workloads that use high-spec multi-core-based applications, the requirements for real-time and stability of VDI are increasing. Accordingly, the display protocol used for remote access in VDI and performance optimization of virtual machines have also become more important. In this paper, we propose two ways to configure desktop virtualization for multi-core-based application operation. First, we propose a codec configuration of a display protocol with optimal performance in a high load situation due to multi-processing. Second, we propose a virtual CPU scheduling optimization method to reduce scheduling delay in case of CPU contention between virtual machines. As a result of the test, it was confirmed that the H.264 codec of Blast Extreme showed the best and stable frame, and the scheduling performance of the virtual CPU was improved through scheduling optimization.

Battery Failure Prediction using BMS Information of ESS Rooms at Offshore Installation Vessel (해양설치선 ESS Room의 BMS정보를 활용한 Battery 고장예측)

  • Kim, Woo-Young;Cheon, Bong-Won;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.59-61
    • /
    • 2021
  • The electric propulsion development is underway to minimize pollutants and greenhous gas emissions during the operation of ships / offshore installation vessels. The importance of the use and efficient management of batteries, which is an ESS system in ships / offshore installation vessels, is increasing. Generally, in ESS where battery is applied, cell balancing and life span are monitored in real time by BMS. Ships / offshore installation vessel are equipped with several ESS rooms, and ESS rooms with ESS systems of the same specification are being constructed due to the recent demand for electric propulsion development. In this paper, we propose an algorithm to additionally predict and diagnose battery pack and cell balancing failures by comparing BMS data for each rooms. The proposed algorithm compares the BMS data of each ESS Room according to the environmental change of the ship / offshore installation vessels, measures accurate status information, and reliably monitors it to prevent accidents in advance.

  • PDF