• 제목/요약/키워드: Real-time feedback control

검색결과 356건 처리시간 0.031초

A study on Real-Time Implementation of Robust Control for Horizontal Articulated Arm with Eight Axis

  • 노연 후 콩;김준홍;이희섭
    • 한국산업융합학회 논문집
    • /
    • 제18권3호
    • /
    • pp.139-149
    • /
    • 2015
  • In this paper, we describe a new approach to perform real-time implementation of an robust controller for robotic manipulator based on digital signal processors in this paper. The Texas Instruments DSPs chips are used in implementing real-time adaptive control algorithms to provide enhanced motion control performance for dual-arm robotic manipulators. In the proposed scheme, adaptation laws are derived from model reference adaptive control principle based on the improved direct Lyapunov method. The proposed adaptive controller consists of an adaptive feed-forward and feedback controller and time-varying auxiliary controller elements. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the proposed adaptive controller is illustrated by simulation and experimental results for robot manipulator consisting of dual arm with eight degrees of freedom at the joint space and cartesian space.

Design of a DSP-Based Adaptive Controller for Real Time Dynamic Control of AM1 Robot

  • S. H. Han;K. S. Yoon;Lee, M. H.;Kim, S. K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.100-104
    • /
    • 1998
  • This paper describes the real-time implementation of an adaptive controller fur the robotic manipulator. Digital signal processors(DSPs) are special purpose micro-processors that are particularly powerful for intensive numerical computations involving sums and products of variables. TMS320C50 chips are used in implementing real time adaptive control algorithms to provide an enhanced motion for robotic manipulators. In the proposed scheme, adaptation laws are derived from the improved Lyapunov second stability analysis based on the direct adaptive control theory. The adaptive controller consists of an adaptive feedforward controller and feedback controller. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by simulation and experimental results for a assembling robot.

  • PDF

매니퓰레이터의 실시간 적응제어 (Real time Adaptive control of the Manipulator)

  • 정찬수;이상철;나채둥;구춘근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.771-776
    • /
    • 1991
  • In this paper. an indirect adaptive controller for manipulator which is composed of two controller structure is considered. One is feedforward controller in which the dynamics equation solved and the other is feedback controller in which the output error compensated. This controller has a good performance, but the computation burden of the feed forward controller keep from real time control. At this point, we proposed the two time adaptive controller where the sampling time of the feedforward controller is quite longer than that of the feedback controller. By the computer simulation, this proposed two time adaptive controller shows good performance in the view of accuracy in spite of decreasing computational burden.

  • PDF

Modeling and experimental verification of phase-control active tuned mass dampers applied to MDOF structures

  • Yong-An Lai;Pei-Tzu Chang;Yan-Liang Kuo
    • Smart Structures and Systems
    • /
    • 제32권5호
    • /
    • pp.281-295
    • /
    • 2023
  • The purpose of this study is to demonstrate and verify the application of phase-control absolute-acceleration-feedback active tuned mass dampers (PCA-ATMD) to multiple-degree-of-freedom (MDOF) building structures. In addition, servo speed control technique has been developed as a replacement for force control in order to mitigate the negative effects caused by friction and inertia. The essence of the proposed PCA-ATMD is to achieve a 90° phase lag for a structure by implementing the desired control force so that the PCA-ATMD can receive the maximum power flow with which to effectively mitigate the structural vibration. An MDOF building structure with a PCA-ATMD and a real-time filter forming a complete system is modeled using a state-space representation and is presented in detail. The feedback measurement for the phase control algorithm of the MDOF structure is compact, with only the absolute acceleration of one structural floor and ATMD's velocity relative to the structure required. A discrete-time direct output-feedback optimization method is introduced to the PCA-ATMD to ensure that the control system is optimized and stable. Numerical simulation and shaking table experiments are conducted on a three-story steel shear building structure to verify the performance of the PCA-ATMD. The results indicate that the absolute acceleration of the structure is well suppressed whether considering peak or root-mean-square responses. The experiment also demonstrates that the control of the PCA-ATMD can be decentralized, so that it is convenient to apply and maintain to real high-rise building structures.

전환제어법칙 설계 및 검증에 관한 연구 (A Study on the Design and Validation of Switching Control Law)

  • 김종섭
    • 제어로봇시스템학회논문지
    • /
    • 제17권1호
    • /
    • pp.54-60
    • /
    • 2011
  • The flight control law designed for prototype aircraft often leads to degraded stability and performance, although developed control law verify by non-real time simulation and pilot based evaluations. Therefore, the proper evaluation methods should be applied such that flight control law designed can be verified in real flight environment. The one proposed in this paper is IFS (In-Flight Simulator). Currently, this system has been implemented into the F-18 HARV (High Angle of Attack Research Vehicle), SU-27 and F-16 VISTA (Variable stability In flight Simulation Test Aircraft) programs. The IFS necessary switching control law such as fader logic and integrator stand-by mode to reduce abrupt transient and minimize the integrator effect for each flight control laws switching. This paper addresses the concept of switching mechanism with fader logic of "TFS (Transient Free Switch)" and stand-by mode of "feedback type" based on SSWM (Software Switching Mechanism). And the result of real-time pilot evaluation reveals that the aircraft is stable for inter-conversion of flight control laws and transient response is minimized.

디지털 신호처리기를 사용한 산업용 로봇의 실시간 적응제어기 설계 (Design of a real Time Adaptive Controller for Industrial Robot Using Digital Signal Processor)

  • 최근국
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.154-161
    • /
    • 1999
  • This paper presents a new approach to the design of adaptive control system using DSPs(TMS320C30) for robotic manipulators to achieve trajectory tracking by the joint angles. Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion control for robotic manipulators. In the proposed control scheme, adaptation laws are derived from the improved Lyapunov second stability analysis method based on the adaptive model reference control theory. The adaptive controller consists of an adaptive feedforward controller, feedback controller, and PID type time-varying auxillary control elements. The proposed adaptive control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Moreover, this scheme does not require an accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

TMS320C31 칩을 사용한 스카라 로봇의 실시간 적응제어데 관한 연구 (A Study on the Real Time Adaptive Controller for SCARA Robot Using TMS320C31 Chip)

  • 김용태
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 춘계학술대회 논문집
    • /
    • pp.79-84
    • /
    • 1996
  • This paper presents a new approach to the design of adaptive control system using DSPs(TMS320C31) for robotic manipulators to achieve trajectory tracking by the joint angles. Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion control for robotic manipulators. In the proposed control scheme, adaptation laws are derived from the improved Lyapunov second stability analysis method based on the adaptive model reference control theory. The adaptive controller consists of an adaptive feedforward controller, feedback controller, and PID type time-varying auxillary control elements. The proposed adaptive control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Moreover, this scheme does not require an accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

디지털 신호처리기를 사용한 산업용 로버트의 실시간 적응제어기 설계 (Design of a Real Time Adaptive Controller for Industrial Robot Using Digital Signal Processor)

    • 한국생산제조학회지
    • /
    • 제5권4호
    • /
    • pp.26-37
    • /
    • 1996
  • This paper presents a new approach to the design of adaptive control system using DSPs(TMS320C30) for robotic manipulators to achieve trajectory tracking by the joint angles Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion control for robotic manipulators. In the proposed control scheme adaptation laws are derived from the improved Lyapunov second stability analysis method based on the adaptive model reference control theory. The adaptive controller consists of an adaptive feedforward controller. feedback controller. and PID type time-varying auxiliary control elements. The proposed adaptive control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Moreover, this scheme does not require a an accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

수평회전형 도립진자의 제어 및 실시간 해석 (The Control and the Real-time Analysis of a Horizontally Rotating Inverted Pendulum)

  • 김효중;김헌진;강철구
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.341-345
    • /
    • 1996
  • This paper presents the dynamics and the teal-time control of a horizontally rotating inverted pendulum. The dynamic equations representing three degrees of freedom rigid body motion of the pendulum are derived, and the state feedback controller is applied to the motion control of the pendulum. A 32 bit counter board with 16 bit hardware communication ability is developed to improve the real-time control performance and is applied to a horizontally rotating inverted pendulum. The simulation and experimental studies are conducted to evaluate the performance of the developed pendulum system and the timing in the real-time control is analyzed.

  • PDF

Effect of Therapeutic Feedback on Non-Face to Face Exercise for Forward Head Posture: Posture, Muscle Strength, Pressure pain Threshold

  • Kim, Yeri;Kim, Gayoung;Kim, Daye;Shin, Hyeri;Oh, Seonghoon;Yu, Pyeonghwa;Jung, Kyusang;Shin, Wonseob
    • Physical Therapy Rehabilitation Science
    • /
    • 제10권2호
    • /
    • pp.147-155
    • /
    • 2021
  • Objective: This study is to investigate the effect of real-time feedback from the therapist on posture, muscle strength, pain of subjects with forward head posture based on a non-face-to-face complex exercise program. Design: Two-group pretest-posttest design. Methods: Thirty healthy men and women in their twenties with forward head posture with a Craniovertebral angle of 52° or less were targeted, the final selection was made as 15 experimental groups who performed the non-face-to-face intervention program while receiving real-time feedback and 15 control subjects who performed the non-face-to-face intervention program without providing feedback. Six of them were eliminated, and a total of 24 were conducted as subjects. All exercise groups performed an exercise program three times a week, 30 minutes each, for a total of two weeks. Before and after exercise, Craniovertebral angle (CVA), CranioRotation angle (CRA), muscle strength, and tenderness threshold were evaluated. Results: Significant differences were shown in both groups in CVA, and tenderness threshold before and after exercise (p<0.05), and CRA, the left middle trapezius muscle strength, only in the experimental group (p<0.05). In the comparison of theamount of change between exercise groups, the group that received feedback on CVA, CRA and tenderness threshold showed a significant change than the group without feedback (p<0.05). Conclusions: As a result of this study, it can be seen that the therapist's real-time feedback is more effective in improving the forward head posture. This requires feedback from the therapist on posture correction during non-face-to-face exercise intervention.