• 제목/요약/키워드: Real-time data analysis

검색결과 2,826건 처리시간 0.037초

Review of Data-Driven Multivariate and Multiscale Methods

  • Park, Cheolsoo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권2호
    • /
    • pp.89-96
    • /
    • 2015
  • In this paper, time-frequency analysis algorithms, empirical mode decomposition and local mean decomposition, are reviewed and their applications to nonlinear and nonstationary real-world data are discussed. In addition, their generic extensions to complex domain are addressed for the analysis of multichannel data. Simulations of these algorithms on synthetic data illustrate the fundamental structure of the algorithms and how they are designed for the analysis of nonlinear and nonstationary data. Applications of the complex version of the algorithms to the synthetic data also demonstrate the benefit of the algorithms for the accurate frequency decomposition of multichannel data.

종관 지상 자료를 이용한 TOVS수치 해석 산출 자료 (TOVS retrieved data with the real time synoptic surface data)

  • 주상원;정효상;김금란
    • 대한원격탐사학회지
    • /
    • 제10권1호
    • /
    • pp.55-67
    • /
    • 1994
  • The International TOVS(TIROS Oprational Vertical Sounders) Process Package(ITPP-VI)is for a global usage, which needs a surface data to generate atmospheric soundings. If the initial input process in the ITPP-VI is not modified, it takes climatic surface data for producing sounding data in general. Korea Meteorological Administration(KMA) is trying to improve the quality of TOVS sounding data using real-time synoptic observations and make a use weather prediction and analysis in various ways. Serval cases in this study show that TOVS retrieved meteolorogical parameters such as atmopheric temperature, dew point depression and geopotential heights used by synoptic surface observations can delineate more detailed atmospheric feature rather than those used by climate surface data. In addition, the collocated comparisons of TOVS synoptic retrieved parameters with radiosonde observations are performed statistically. TOVS retrieved fields with the synoptic surface analyzed data show smaller bias reatively than those with the climatic data and also reduced root mean square differences below 700 hPa as expected.

Plurality Rule-based Density and Correlation Coefficient-based Clustering for K-NN

  • Aung, Swe Swe;Nagayama, Itaru;Tamaki, Shiro
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제6권3호
    • /
    • pp.183-192
    • /
    • 2017
  • k-nearest neighbor (K-NN) is a well-known classification algorithm, being feature space-based on nearest-neighbor training examples in machine learning. However, K-NN, as we know, is a lazy learning method. Therefore, if a K-NN-based system very much depends on a huge amount of history data to achieve an accurate prediction result for a particular task, it gradually faces a processing-time performance-degradation problem. We have noticed that many researchers usually contemplate only classification accuracy. But estimation speed also plays an essential role in real-time prediction systems. To compensate for this weakness, this paper proposes correlation coefficient-based clustering (CCC) aimed at upgrading the performance of K-NN by leveraging processing-time speed and plurality rule-based density (PRD) to improve estimation accuracy. For experiments, we used real datasets (on breast cancer, breast tissue, heart, and the iris) from the University of California, Irvine (UCI) machine learning repository. Moreover, real traffic data collected from Ojana Junction, Route 58, Okinawa, Japan, was also utilized to lay bare the efficiency of this method. By using these datasets, we proved better processing-time performance with the new approach by comparing it with classical K-NN. Besides, via experiments on real-world datasets, we compared the prediction accuracy of our approach with density peaks clustering based on K-NN and principal component analysis (DPC-KNN-PCA).

실시간 소프트웨어 GPS 수신기 구현 및 성능 분석 (Implementation of Real-Time Software GPS Receiver and Performance Analysis)

  • 곽희삼;고선준;원종훈;이자성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2350-2352
    • /
    • 2004
  • This paper presents the implementation-tation of the real-time software GPS Receiver based on FFT and FLL assisted PLL tracking algorithm. The FFT(fast fourier transform) based GPS si-gnal acquisition scheme provides a fast TTFF(time to first fix) performance. The tracking based on FLL assisted PLL enables tracking of GPS signal in a high dynamic environment. The designed software GPS receiver uses the indexing method for generating replica carrier to reduce computation load. The performance of the implemented GPS receiver is evaluated using high-dynamic simulated data from a simulator and real static data.

  • PDF

실시간 수질 예측을 위한 신경망 모형의 적용 (Application of Neural Network Model to the Real-time Forecasting of Water Quality)

  • 조용진;연인성;이재관
    • 한국물환경학회지
    • /
    • 제20권4호
    • /
    • pp.321-326
    • /
    • 2004
  • The objective of this study is to test the applicability of neural network models to forecast water quality at Naesa and Pyongchang river. Water quality data devided into rainy day and non-rainy day to find characteristics of them. The mean and maximum data of rainy day show higher than those of non-rainy day. And discharge correlate with TOC at Pyongchang river. Neural network model is trained to the correlation of discharge with water quality. As a result, it is convinced that the proposed neural network model can apply to the analysis of real time water quality monitoring.

실시간 앙상블 가뭄전망정보 생산 체계 구축 및 평가 (Development & Evaluation of Real-time Ensemble Drought Prediction System)

  • 배덕효;안중배;김현경;김헌애;손경환;조세라;정의석
    • 대기
    • /
    • 제23권1호
    • /
    • pp.113-121
    • /
    • 2013
  • The objective of this study is to develop and evaluate the system to produce the real-time ensemble drought prediction data. Ensemble drought prediction consists of 3 processes (meteorological outlook using the multi-initial conditions, hydrological analysis and drought index calculation) therefore, more processing time and data is required than that of single member. For ensemble drought prediction, data process time is optimized and hardware of existing system is upgraded. Ensemble drought data is estimated for year 2012 and to evaluate the accuracy of drought prediction data by using ROC (Relative Operating Characteristics) analysis. We obtained 5 ensembles as optimal number and predicted drought condition for every tenth day i.e. 5th, 15th and 25th of each month. The drought indices used are SPI (Standard Precipitation Index), SRI (Standard Runoff Index), SSI (Standard Soil moisture Index). Drought conditions were determined based on results obtained for each ensemble member. Overall the results showed higher accuracy using ensemble members as compared to single. The ROC score of SRI and SSI showed significant improvement in drought period however SPI was higher in the demise period. The proposed ensemble drought prediction system can be contributed to drought forecasting techniques in Korea.

사물인터넷 환경에서 대용량 스트리밍 센서데이터의 실시간·병렬 시맨틱 변환 기법 (Real-time and Parallel Semantic Translation Technique for Large-Scale Streaming Sensor Data in an IoT Environment)

  • 권순현;박동환;방효찬;박영택
    • 정보과학회 논문지
    • /
    • 제42권1호
    • /
    • pp.54-67
    • /
    • 2015
  • 최근 사물인터넷 환경에서는 발생하는 센서데이터의 가치와 데이터의 상호운용성을 증진시키기 위해 시맨틱웹 기술과의 접목에 대한 연구가 활발히 진행되고 있다. 이를 위해서는 센서데이터와 서비스 도메인 지식의 융합을 위한 센서데이터의 시맨틱화는 필수적이다. 하지만 기존의 시맨틱 변환기술은 정적인 메타데이터를 시맨틱 데이터(RDF)로 변환하는 기술이며, 이는 사물인터넷 환경의 실시간성, 대용량성의 특징을 제대로 처리할 수 없는 실정이다. 따라서 본 논문에서는 사물인터넷 환경에서 발생하는 대용량 스트리밍 센서데이터의 실시간 병렬처리를 통해 시맨틱 데이터로 변환하는 기법을 제시한다. 본 기법에서는 시맨틱 변환을 위한 변환규칙을 정의하고, 정의된 변환규칙과 온톨로지 기반 센서 모델을 통해 실시간 병렬로 센서데이터를 시맨틱 변환하여 시맨틱 레파지토리에 저장한다. 성능향상을 위해 빅데이터 실시간 분석 프레임워크인 아파치 스톰을 이용하여, 각 변환작업을 병렬로 처리한다. 이를 위한 시스템을 구현하고, 대용량 스트리밍 센서데이터인 기상청 AWS 관측데이터를 이용하여 제시된 기법에 대한 성능평가를 진행하여, 본 논문에서 제시된 기법을 입증한다.

스핀코터의 진동 평가를 통한 이상 검출 시스템 개발 (Fault Detection System Development for a Spin Coater Through Vibration Assessment)

  • 문준희;이봉구
    • 한국정밀공학회지
    • /
    • 제26권11호
    • /
    • pp.47-54
    • /
    • 2009
  • Spin coaters are the essential instruments in micro-fabrication processes, which apply uniform thin films to flat substrates. In this research, a spin coater diagnosis system is developed to detect the abnormal operation of TFT-LCD process in real time. To facilitate the real-time data acquisition and analysis, the circular-buffered continuous data transfer and the short-time Fourier transform are applied to the fault diagnosis system. To determine whether the system condition is normal or not, a steady-state detection algorithm and a frequency spectrum comparison algorithm using confidence interval are newly devised. Since abnormal condition of a spin coater is rarely encountered, algorithm is tested on a CD-ROM drive and the developed program is verified by a function generator. Actual threshold values for the fault detection are tuned in a spin coater in process.

SNS Big-data를 활용한 TV 광고 효과 분석 시스템 설계 (A Design of a TV Advertisement Effectiveness Analysis System Using SNS Big-data)

  • 이아름;방지선;김윤희
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권9호
    • /
    • pp.579-586
    • /
    • 2015
  • 스마트폰 보급률이 증가함과 함께 SNS(Social Networking Service) 이용자도 늘어가고 있다. SNS는 실시간으로 사람들 간의 개인적인 의견을 빠르게 주고받을 수 있다는 특징이 있어 이를 통해 개인의 반응을 실시간으로 수집, 분석이 가능하다. 한편, TV광고 효과 분석에 있어 사람들의 의견을 실시간으로 수집하고 분석하기 위해 새로운 접근 방법이 필요해졌다. 이에 본 연구에서는 트위터라는 특정 SNS를 대상으로 광고에 대한 데이터를 수집하여 실시간으로 광고 효과를 분석하는 시스템을 설계 및 구축하였다. 특히, 하둡을 이용하여 빅데이터 분석을 병렬화하여 효율적으로 수행하도록 하였으며, TV광고에 대해 언급도와 선호도, 신뢰도를 각각 분석하여 다양한 분석을 가능하게 하였다. 오피니언 마이닝 기법을 신뢰도 분석에 사용하여 분석의 정확도를 높였다. 구축한 시스템을 통해 트위터 SNS를 대상으로 TV광고에 대한 분석을 세분화하여 신속하게 처리할 수 있음을 보여주었다.

실시간 SIFT 기본주파수 검출기의 구현 (Implementation of a Real-time SIFT Pitch Detector)

  • 이종석;이상욱
    • 대한전자공학회논문지
    • /
    • 제23권1호
    • /
    • pp.101-113
    • /
    • 1986
  • In this paper, a real-time pitch detector LPC vocoder as implemented on a high speed digital signal processor, NEC 7720, is described. The pitch detector was based mainly on the SIFT algorithm. The SIFT pitch detector consists primarily of a digital low pass filter, inverse filter, computation of autocorrelation, a peak picker, interpolation, V/UV defcision and a final pitch smoother. In our approach, modification, mainly on the V/UV decision and a final pitch smoother, was made to estimate more accurate pitches. An 16-bit fixed-point aithmatic was employed for all necessary computation and the simulated results were compared with the eye detected pitches obtained from real speech data. The pitch detector occupies 98.8% of the instruction ROM, 37% of the data ROM, and 94% of internal RAM and takes 15.2ms to estimate a pitch when an analysis frame is consisted of 128 sampled speech data. It is observed that the tested results were well agreed with the computer simulation results.

  • PDF