• 제목/요약/키워드: Real-time collision avoidance

검색결과 93건 처리시간 0.029초

Study on Application of Real Time AIS Information

  • Hori, Akihiko;Arai, Yasuo;Okuda, Shigeyuki
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 Asia Navigation Conference
    • /
    • pp.63-70
    • /
    • 2006
  • Now AIS (Automatic Identification System) has been under full operation for ocean-going vessels, and it is expected not only to identify target ships but also to take collision avoidance using AIS information with Radar and ARFA information in restricted waters. AIS information is very useful not only for target identifications but also for taking collision avoidance, but OOW (Officer OF Watch-keeping) should take care of systematic observation of AIS because of miss-operation or malfunction of AIS. In this paper, we propose the application of Onboard Ship Handling Simulator with visual system displayed 3D scene added AIS performance such as blind areas of Island, microwave propagation, ok. and maneuvering simulation using TK models, applied real time AIS information and research the effectiveness of this system for ship handling in restricted waters, and discus the principal issues through the on board experiments. Conclusion will be expected that; 1) systematic observation of ASS information using visual scene simulator with AIS information will be effectively done, 2) observation compared with Radar and ARPA information will be also useful to make a systematic observation, 3) using the recording and replay function of simulation will be useful not only for systematic observation but also to measure and to encourage officers' skill.

  • PDF

관제 공역 다중 드론 운행 충돌 방지 방안 연구 (A Study on Method to prevent Collisions of Multi-Drone Operation in controlled Airspace)

  • 유순덕;최태인;조성원
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권5호
    • /
    • pp.103-111
    • /
    • 2021
  • 본 연구목적은 관제 공역 다중 드론의 운행 충돌 방지 방안에 대한 연구이다. 연구 결과 드론 충돌을 회피하는 방안으로 관제 시스템에서 드론 예상 경로와 시간을 기반으로 추정되는 ROI 영역에 대한 정확한 정보를 설정 후 드론 충돌을 제어 할 수 있는 방안으로 적절하다는 것을 입증하였다. 실혐분석 결과, 운행하는 드론의 항로 직경은 충돌 위험을 줄일 수 있는 규모를 선정해야 하며, 운행하는 드론의 출발시간과 운행 속도의 변화는 충돌에 영향요인으로 작동하지 않았다. 또한, 충돌을 회피하기 위한 대응 방안으로 비행 우선 순위 제공이 적절한 방법 중의 하나임을 실증하였다. 충돌 회피 방안에 대해 드론 센서기반 충돌회피뿐만 아니라 관제 시스템에서 충돌을 모니터링 및 예측하고 실시간 제어를 수행하여 이중으로 충돌을 보완 할 수 있다. 본 연구는 관제 기반으로 운행되는 드론의 충돌 방지 방안에 대한 아이디어를 제공하고 이를 실질적인 테스트를 진행했다는 것에 의의를 두고 있다. 이는 관제 기반으로 이기종 드론들이 다수 운행시 등장하는 충돌 문제 해결에 도움이 된다. 본 연구는 드론의 충돌로 인한 사고 방지와 안전한 드론 운행 환경 제공을 통한 관련 산업의 발달에 기여 할 것이다.

Simplified Cooperative Collision Avoidance Method Considering the Desired Direction as the Operation Objective of Each Mobile Robot

  • Yasuaki, Abe;Yoshiki, Matsuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1927-1932
    • /
    • 2003
  • In a previous study, the authors have proposed the Cooperative Collision Avoidance (CCA) method which enables mobile robots to cooperatively avoid collisions, by extending the concept of the Velocity Obstacle to multiple robot systems. The method introduced an evaluation function considering an operation objective so that each robot can choose the velocity which optimizes the function. As the evaluation function could be of an arbitrary type, this method is applicable to a wide variety of tasks. However, it complicates the optimization of the function especially in real-time. In addition, construction of the evaluation function requires an operation objective of the other robot which is very hard to obtain without communication. In this paper, the CCA method is improved considering such problems for implementation. To decrease computational costs, the previous method is simplified by introducing two essential assumptions. Then, by treating the desired direction of locomotion for each robot as the operation objective, an operation objective estimator which estimates the desired direction of the other robot is introduced. The only measurement required is the other robot's relative position, since the other information can be obtained through the estimation. Hence, communicational devices that are necessary for most other cooperative methods are not required. Moreover, mobile robots employing the method can avoid collisions with uncooperative robots or moving obstacles as well as with cooperative robots. Consequently, this improved method can be applied to general dynamic environments consisting of various mobile robots.

  • PDF

이미지 기반의 유도장과 항해장을 활용한 실시간 대규모 군중 시뮬레이션 (Large-Scale Realtime Crowd Simulation Using Image-Based Affordance and Navigation Potential Fields)

  • 옥수열
    • 한국멀티미디어학회논문지
    • /
    • 제17권9호
    • /
    • pp.1104-1114
    • /
    • 2014
  • In large-scale crowd simulations, it is very important for the decision-making system of manipulating interactive behaviors to minimize the computational cost for controlling realistic behaviors such as collision avoidance. In this paper, we propose a large-scale realtime crowd simulation method using the affordance and navigation potential fields such as attractive and repulsive forces of electromagnetic fields. In particular, the model that we propose locally handles the realistic interactions between agents, and thus radically reduces the cost of expensive computation on interactions which has been the most problematic in crowd simulation. Our method is widely applicable to the expression and analysis of various crowd behaviors that are needed in behavior control in computer games, crowd scenes in movies, emergent behaviors of evacuation, etc.

이동 로봇의 실시간 장애물 회피를 위한 새로운 방법 (A New Approach to Real-Time Obstacle Avoidance of a Mobile Robot)

  • 고낙용
    • 한국생산제조학회지
    • /
    • 제7권4호
    • /
    • pp.28-34
    • /
    • 1998
  • This paper presents a new method for local obstacle avoidance of indoor mobile robots. The method combines a directional approach called the lane method and a velocity space approach. The lane method divides working area into lanes and then chooses the best lane to follow for efficient and collision-free movement. Then, the heading direction to enter and follow the best lane is decided, and translational and rotational velocity considering physical limitations of a mobile robot are determined. Since this method combines both the directional and velocity space method, it shows collision-free motion as well as smooth motion taking the dynamic of the robot into account.

Motion Planning of an Autonomous Mobile Robot in Flexible Manufacturing Systems

  • Kim, Yoo-Seok-;Lee, Jang-Gyu-
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1254-1257
    • /
    • 1993
  • Presented in this paper is a newly developed motion planning method of an autonomous mobile robot(MAR) which can be applied to flexible manufacturing systems(FMS). The mobile robot is designed for transporting tools and workpieces between a set-up station and machines according to production schedules of the whole FMS. The proposed method is implemented based on an earlier developed real-time obstacle avoidance method which employs Kohonen network for pattern classification of sonar readings and fuzzy logic for local path planning. Particulary, a novel obstacle avoidance method for moving objects using a collision index, collision possibility measure, is described. Our method has been tested on the SNU mobile robot. The experimental results show that the robot successfully navigates to its target while avoiding moving objects.

  • PDF

Real-time collision-free landing path planning for drone deliveries in urban environments

  • Hanseob Lee;Sungwook Cho;Hoon Jung
    • ETRI Journal
    • /
    • 제45권5호
    • /
    • pp.746-757
    • /
    • 2023
  • This study presents a novel safe landing algorithm for urban drone deliveries. The rapid advancement of drone technology has given rise to various delivery services for everyday necessities and emergency relief efforts. However, the reliability of drone delivery technology is still insufficient for application in urban environments. The proposed approach uses the "landing angle control" method to allow the drone to land vertically and a rapidly exploring random tree-based collision avoidance algorithm to generate safe and efficient vertical landing paths for drones while avoiding common urban obstacles like trees, street lights, utility poles, and wires; these methods allow for precise and reliable urban drone delivery. We verified the approach within a Gazebo simulation operated through ROS using a six-degree-of-freedom drone model and sensors with similar specifications to actual models. The performance of the algorithms was tested in various scenarios by comparing it with that of stateof-the-art 3D path planning algorithms.

이동 로봇의 지역 장애물 회피를 위한 새로운 방법 (A New Method for Local Obstacle Avoidance of a Mobile Robot)

  • 김성철
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 춘계학술대회 논문집
    • /
    • pp.88-93
    • /
    • 1998
  • This paper presents a new solution approach to moving obstacle avoidance problem for a mobile robot. A new concept avoidability measure(AVM) is defined to describe the state of a pair of a robot and an obstacle regarding the collision between them. As an AVM, virtual distance function(VDF) is derived as a function of the distance from the obstacle to the robot and outward speed of the obstacle relative to the robot. By keeping the virtual distance above some positive limit value, the robot avoids the obstacle. In terns of the VDF, an artificial potential field is constructed to repel the robot away from the obstacle and to attract the robot toward a goal location. At every sampling time, the artificial potential field is updated and the force driving the robot is derived form the gradient of the artificial potential field. The suggested algorithm drives the robot to avoid moving obstacles in real time. Since the algorithm considers the mobility of the obstacle as well as the distance, it is effective for moving obstacle avoidance. Some simulation studies show the effectiveness of the proposed approach.

  • PDF

A Joystick Driving Control Algorithm with a Longitudinal Collision Avoidance Scheme for an Electric Vehicle

  • Won, Mooncheol
    • Journal of Mechanical Science and Technology
    • /
    • 제17권10호
    • /
    • pp.1399-1410
    • /
    • 2003
  • In this paper, we develop a joystick manual driving algorithm for an electric vehicle called Cycab. Cycab is developed as a public transportation vehicle, which can be driven either by a manual joystick or an automated driving mode. The vehicle uses six motors for driving four wheels, and front/rear steerings. Cycab utilizes one industrial PC with a real time Linux kernel and four Motorola MPC555 micro controllers, and a CAN network for the communication among the five processors. The developed algorithm consists of two automatic vehicle speed control algorithms for normal and emergency situations that override the driver's joystick command and an open loop torque distribution algorithm for the traction motors. In this study, the algorithm is developed using SynDEx, which is a system level CAD software dedicated to rapid prototyping and optimizing the implementation of real-time embedded applications on distributed architectures. The experimental results verify the usefulness of the two automatic vehicle control algorithms.

인식시간을 단축한 RFID 리더충돌회피 시스템 (Improving Recognition Time in the RFID Reader Collision Avoidance System)

  • 김유호;장영수;최봉석;성원모
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제14권9호
    • /
    • pp.884-891
    • /
    • 2008
  • RFID 시스템이 그 규모가 커짐에 따라 리더 충돌에 따른 인식률 저하 문제가 대두되고 있다. 시분할 기법을 사용하면 충돌문제를 해결할 수 있지만, 전체 인식시간은 늘어가게 된다. 이 문제는 RFID를 이용한 실시간 재고관리를 위해 해결해야만 한다. 본 연구에서는 ARCM(Anti Reader Collision Manager)을 RFID 시스템에 두어 전체 인식시간을 개선하였다. ARCM은 효율적인 주파수 채널 사용으로 짧은 인식시간을 가지며 리더가 간섭을 회피해 태그를 인식할 수 있도록 RFID 시스템을 관리한다. ARCM을 사용한 결과, 기존의 시스템보다 최대 20%정도의 시간을 절약할 수 있었다.