• Title/Summary/Keyword: Real-time Traffic Analysis

Search Result 434, Processing Time 0.024 seconds

Analysis of Remote Driving Simulation Performance for Low-speed Mobile Robot under V2N Network Delay Environment (V2N 네트워크 지연 환경에서 저속 이동 로봇 원격주행 모의실험을 통한 성능 분석)

  • Song, Yooseung;Min, Kyoung-wook;Choi, Jeong Dan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.3
    • /
    • pp.18-29
    • /
    • 2022
  • Recently, cooperative intelligent transport systems (C-ITS) testbeds have been deployed in great numbers, and advanced autonomous driving research using V2X communication technology has been conducted actively worldwide. In particular, the broadcasting services in their beginning days, giving warning messages, basic safety messages, traffic information, etc., gradually developed into advanced network services, such as platooning, remote driving, and sensor sharing, that need to perform real-time. In addition, technologies improving these advanced network services' throughput and latency are being developed on many fronts to support these services. Notably, this research analyzed the network latency requirements of the advanced network services to develop a remote driving service for the droid type low-speed robot based on the 3GPP C-V2X communication technology. Subsequently, this remote driving service's performance was evaluated using system modeling (that included the operator behavior) and simulation. This evaluation showed that a respective core and access network latency of less than 30 ms was required to meet more than 90 % of the remote driving service's performance requirements under the given test conditions.

Implementation of integrated monitoring system for trace and path prediction of infectious disease (전염병의 경로 추적 및 예측을 위한 통합 정보 시스템 구현)

  • Kim, Eungyeong;Lee, Seok;Byun, Young Tae;Lee, Hyuk-Jae;Lee, Taikjin
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.69-76
    • /
    • 2013
  • The incidence of globally infectious and pathogenic diseases such as H1N1 (swine flu) and Avian Influenza (AI) has recently increased. An infectious disease is a pathogen-caused disease, which can be passed from the infected person to the susceptible host. Pathogens of infectious diseases, which are bacillus, spirochaeta, rickettsia, virus, fungus, and parasite, etc., cause various symptoms such as respiratory disease, gastrointestinal disease, liver disease, and acute febrile illness. They can be spread through various means such as food, water, insect, breathing and contact with other persons. Recently, most countries around the world use a mathematical model to predict and prepare for the spread of infectious diseases. In a modern society, however, infectious diseases are spread in a fast and complicated manner because of rapid development of transportation (both ground and underground). Therefore, we do not have enough time to predict the fast spreading and complicated infectious diseases. Therefore, new system, which can prevent the spread of infectious diseases by predicting its pathway, needs to be developed. In this study, to solve this kind of problem, an integrated monitoring system, which can track and predict the pathway of infectious diseases for its realtime monitoring and control, is developed. This system is implemented based on the conventional mathematical model called by 'Susceptible-Infectious-Recovered (SIR) Model.' The proposed model has characteristics that both inter- and intra-city modes of transportation to express interpersonal contact (i.e., migration flow) are considered. They include the means of transportation such as bus, train, car and airplane. Also, modified real data according to the geographical characteristics of Korea are employed to reflect realistic circumstances of possible disease spreading in Korea. We can predict where and when vaccination needs to be performed by parameters control in this model. The simulation includes several assumptions and scenarios. Using the data of Statistics Korea, five major cities, which are assumed to have the most population migration have been chosen; Seoul, Incheon (Incheon International Airport), Gangneung, Pyeongchang and Wonju. It was assumed that the cities were connected in one network, and infectious disease was spread through denoted transportation methods only. In terms of traffic volume, daily traffic volume was obtained from Korean Statistical Information Service (KOSIS). In addition, the population of each city was acquired from Statistics Korea. Moreover, data on H1N1 (swine flu) were provided by Korea Centers for Disease Control and Prevention, and air transport statistics were obtained from Aeronautical Information Portal System. As mentioned above, daily traffic volume, population statistics, H1N1 (swine flu) and air transport statistics data have been adjusted in consideration of the current conditions in Korea and several realistic assumptions and scenarios. Three scenarios (occurrence of H1N1 in Incheon International Airport, not-vaccinated in all cities and vaccinated in Seoul and Pyeongchang respectively) were simulated, and the number of days taken for the number of the infected to reach its peak and proportion of Infectious (I) were compared. According to the simulation, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days when vaccination was not considered. In terms of the proportion of I, Seoul was the highest while Pyeongchang was the lowest. When they were vaccinated in Seoul, the number of days taken for the number of the infected to reach at its peak was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. When they were vaccinated in Pyeongchang, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. Based on the results above, it has been confirmed that H1N1, upon the first occurrence, is proportionally spread by the traffic volume in each city. Because the infection pathway is different by the traffic volume in each city, therefore, it is possible to come up with a preventive measurement against infectious disease by tracking and predicting its pathway through the analysis of traffic volume.

Incremental Ensemble Learning for The Combination of Multiple Models of Locally Weighted Regression Using Genetic Algorithm (유전 알고리즘을 이용한 국소가중회귀의 다중모델 결합을 위한 점진적 앙상블 학습)

  • Kim, Sang Hun;Chung, Byung Hee;Lee, Gun Ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.9
    • /
    • pp.351-360
    • /
    • 2018
  • The LWR (Locally Weighted Regression) model, which is traditionally a lazy learning model, is designed to obtain the solution of the prediction according to the input variable, the query point, and it is a kind of the regression equation in the short interval obtained as a result of the learning that gives a higher weight value closer to the query point. We study on an incremental ensemble learning approach for LWR, a form of lazy learning and memory-based learning. The proposed incremental ensemble learning method of LWR is to sequentially generate and integrate LWR models over time using a genetic algorithm to obtain a solution of a specific query point. The weaknesses of existing LWR models are that multiple LWR models can be generated based on the indicator function and data sample selection, and the quality of the predictions can also vary depending on this model. However, no research has been conducted to solve the problem of selection or combination of multiple LWR models. In this study, after generating the initial LWR model according to the indicator function and the sample data set, we iterate evolution learning process to obtain the proper indicator function and assess the LWR models applied to the other sample data sets to overcome the data set bias. We adopt Eager learning method to generate and store LWR model gradually when data is generated for all sections. In order to obtain a prediction solution at a specific point in time, an LWR model is generated based on newly generated data within a predetermined interval and then combined with existing LWR models in a section using a genetic algorithm. The proposed method shows better results than the method of selecting multiple LWR models using the simple average method. The results of this study are compared with the predicted results using multiple regression analysis by applying the real data such as the amount of traffic per hour in a specific area and hourly sales of a resting place of the highway, etc.

A Geographically Weighted Regression on the Effect of Regulation of Space Use on the Residential Land Price - Evidence from Jangyu New Town - (공간사용 규제가 택지가격에 미치는 영향에 대한 공간가중회귀분석 - 장유 신도시지역을 대상으로-)

  • Kang, Sun-Duk;Park, Sae-Woon;Jeong, Tae-Yun
    • Management & Information Systems Review
    • /
    • v.37 no.3
    • /
    • pp.27-47
    • /
    • 2018
  • In this study, we examine how land use zoning affects the land price controlling other variables such as road-facing condition of the land, land form, land age after its development and land size. We employ geographically weighted regression analysis which reflects spatial dependency as methodology with a data sample of land transaction price data of Jangyu, a new town, in Korea. The results of our empirical analysis show that the respective coefficients of traditional regression and geographically weighted regression are not significantly different. However, after calculating Moran's Index with residuals of both OLS and GWR models, we find that Moran's Index of GWR decreases around 26% compared to that of OLS model, thus improving the problem of spatial autoregression of residuals considerably. Unlike our expectation, though, in both traditional regression and geographically weighted regression where residential exclusive area is used as a reference variable, the dummy variable of the residential land for both housing and shops shows a negative sign. This may be because the residential land for both housing and shops is usually located in the level area while the residential exclusive area is located at the foot of a mountain or on a gentle hill where the residents can have good quality air and scenery. Although the utility of the residential land for both housing and shops is higher than its counterpart's since it has higher floor area ratio, amenity which can be explained as high quality of air and scenery in this study seems to have higher impact in purchase of land for housing. On the other hand, land for neighbourhood living facility seems to be valued higher than any other land zonings used in this research since it has much higher floor area ratio than the two land zonings above and can have a building with up to 5 stories constructed on it. With regard to road-facing condition, land buyers seem to prefer land which faces a medium-width road as expected. Land facing a wide-width road may have some disadvantage in that it can be exposed to noise and exhaust gas from cars and that entrance may not be easy due to the high speed traffic of the road. In contrast, land facing a narrow road can be free of noise or fume from cars and have privacy protected while it has some inconvenience in that entrance may be blocked by cars parked in both sides of the narrow road. Finally, land age variable shows a negative sign, which means that the price of land declines over time. This may be because decline of the land price of Jangyu was bigger than that of other regions in Gimhae where Jangyu, a new town, also belong, during the global financial crisis of 2008.