• Title/Summary/Keyword: Real-time Position Management (RPM)

Search Result 23, Processing Time 0.027 seconds

Consideration of the Accuracy by Variation of Respiration in Real-time Position Management Respiratory Gating System (호흡동조 방사선치료에 사용되고 있는 RPM (Real-time Position Management) Respiratory Gating System의 호흡변화에 따른 정확성에 대한 고찰)

  • Na, Jun Young;Kang, Tae Young;Baek, Geum Mun;Kwon, Gyeong Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.49-55
    • /
    • 2013
  • Purpose: Respiratory Gated Radiation Therapy (RGRT) has been carried out using RPM (Real-time Position Management) Respiratory Gating System (version 1.7.5, varian, USA) in Asan Medical Center. This study was to analyze and evaluate the accuracy of Respiratory Gated Radiation Therapy (RGRT) according to variation of respiration. Materials and Methods: Making variation of respiration using Motion Phantom:QUASAR Programmable Respiratory Motion Phantom (Moudus Medical Device Inc. CANADA) able to adjust respiration pattern randomly was varying period, amplitude and baseline by analyze 50 patient's respiration of lung and liver cancer. One of the variations of respiration is baseline shift gradually downward per 0.01 cm, 0.03 cm, 0.05 cm. The other variation of respiration is baseline shift accidently downward per 0.2 cm, 0.4 cm, 0.6 cm, 0.8 cm. Experiments were performed in the same way that is used RPM Respiratory Gating System (phase gating, usually 30~70% gating) in Asan Medical Center. Results: It was all exposed radiation under one of the conditions of baseline shift gradually downward per 0.01 cm, 0.03 cm, 0.05 cm. Under the other condition of baseline shift accidently downward per 0.2 cm, 0.4 cm, 0.6 cm, 0.8 cm equally radiation was exposed. Conclusion: The variations of baseline shifts didn't accurately reflect on phase gating in RPM Respiratory Gating System. This inexactitude makes serious uncertainty in Respiratory Gated Radiation Therapy. So, Must be stabilized breathing of patient before conducting Respiratory Gated Radiation Therapy. also must be monitored breathing of patient in the middle of treatment. If you observe considerable changes of breathing when conducting Respiratory Gated Radiation Therapy. Stopping treatment immediately and then must be need to recheck treatment site using fluoroscopy. If patient's respiration rechecked using fluoroscopy restabilize, it is possible to restart Respiratory Gated Radiation Therapy.

  • PDF

Evaluation of Accuracy About 2D vs 3D Real-Time Position Management System Based on Couch Rotation when non-Coplanar Respiratory Gated Radiation Therapy (비동일평면 호흡동조방사선치료 시 테이블 회전에 따른 2D vs 3D Real-Time Position Management 시스템의 정확성 평가)

  • Kwon, Kyung-Tae;Kim, Jung-Soo;Sim, Hyun-Sun;Min, Jung-Whan;Son, Soon-Yong;Han, Dong-Kyoon
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.601-606
    • /
    • 2016
  • Because of non-coplanar therapy with couch rotation in respiratory gated radiation therapy, the recognition of marker movement due to the change in the distance between the infrared camera and the marker due to the rotation of the couch is called RPM (Real-time The purpose of this paper is to evaluate the accuracy of motion reflections (baseline changes) of 2D gating configuration (two dot marker block) and 3D gating configuration (six dot marker block). The motion was measured by varying the couch angle in the clockwise and counterclockwise directions by $10^{\circ}$ in the 2D gating configuration. In the 3D gating configuration, the couch angle was changed by $10^{\circ}$ in the clockwise direction and compared with the baseline at the reference $0^{\circ}$. The reference amplitude was 1.173 to 1.165, the couch angle at $20^{\circ}$ was 1.132, and the couch angle at $1.0^{\circ}$ was 1.083. At $350^{\circ}$ counterclockwise, the reference amplitude was 1.168 to 1.157, the couch angle at $340^{\circ}$ was 1.124, and the couch angle at $330^{\circ}$ was 1.079. In this study, the phantom is used to quantitatively evaluate the value of the amplitude according to couch change.

Cardiac dose reduction with breathing adapted radiotherapy using self respiration monitoring system for left-sided breast cancer

  • Sung, KiHoon;Lee, Kyu Chan;Lee, Seung Heon;Ahn, So Hyun;Lee, Seok Ho;Choi, Jinho
    • Radiation Oncology Journal
    • /
    • v.32 no.2
    • /
    • pp.84-94
    • /
    • 2014
  • Purpose: To quantify the cardiac dose reduction during breathing adapted radiotherapy using Real-time Position Management (RPM) system in the treatment of left-sided breast cancer. Materials and Methods: Twenty-two patients with left-sided breast cancer underwent CT scans during breathing maneuvers including free breathing (FB), deep inspiration breath-hold (DIBH), and end inspiration breath-hold (EIBH). The RPM system was used to monitor respiratory motion, and the in-house self respiration monitoring (SRM) system was used for visual feedback. For each scan, treatment plans were generated and dosimetric parameters from DIBH and EIBH plans were compared to those of FB plans. Results: All patients completed CT scans with different breathing maneuvers. When compared with FB plans, DIBH plans demonstrated significant reductions in irradiated heart volume and the heart $V_{25}$, with the relative reduction of 71% and 70%, respectively (p < 0.001). EIBH plans also resulted in significantly smaller irradiated heart volume and lower heart $V_{25}$ than FB plans, with the relative reduction of 39% and 37%, respectively (p = 0.002). Despite of significant expansion of lung volume using inspiration breath-hold, there were no significant differences in left lung $V_{25}$ among the three plans. Conclusion: In comparison with FB, both DIBH and EIBH plans demonstrated a significant reduction of radiation dose to the heart. In the training course, SRM system was useful and effective in terms of positional reproducibility and patient compliance.

Respiratory signal analysis of liver cancer patients with respiratory-gated radiation therapy (간암 호흡동조 방사선치료 환자의 호흡신호분석)

  • Kang, dong im;Jung, sang hoon;Kim, chul jong;Park, hee chul;Choi, byung ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.23-30
    • /
    • 2015
  • Purpose : External markers respiratory movement measuring device (RPM; Real-time Position Management, Varian Medical System, USA) Liver Cancer Radiation Therapy Respiratory gated with respiratory signal with irradiation time and the actual research by analyzing the respiratory phase with the breathing motion measurement device respiratory tuning evaluate the accuracy of radiation therapy Materials and Methods : May-September 2014 Novalis Tx. (Varian Medical System, USA) and liver cancer radiotherapy using respiratory gated RPM (Duty Cycle 20%, Gating window 40% ~ 60%) of 16 patients who underwent total when recording the analyzed respiratory movement. After the breathing motion of the external markers recorded on the RPM was reconstructed by breathing through the acts phase analysis, for Beam-on Time and Duty Cycle recorded by using the reconstructed phase breathing breathing with RPM gated the prediction accuracy of the radiation treatment analysis and analyzed the correlation between prediction accuracy and Duty Cycle in accordance with the reproducibility of the respiratory movement. Results : Treatment of 16 patients with respiratory cycle during the actual treatment plan was analyzed with an average difference -0.03 seconds (range -0.50 seconds to 0.09 seconds) could not be confirmed statistically significant difference between the two breathing (p = 0.472). The average respiratory period when treatment is 4.02 sec (${\pm}0.71sec$), the average value of the respiratory cycle of the treatment was characterized by a standard deviation 7.43% (range 2.57 to 19.20%). Duty Cycle is that the actual average 16.05% (range 13.78 to 17.41%), average 56.05 got through the acts of the show and then analyzed% (range 39.23 to 75.10%) is planned in respiratory research phase (40% to 60%) in was confirmed. The investigation on the correlation between the ratio Duty Cycle and planned respiratory phase and the standard deviation of the respiratory cycle was analyzed in each -0.156 (p = 0.282) and -0.385 (p = 0.070). Conclusion : This study is to analyze the acts after the breathing motion of the external markers recorded during the actual treatment was confirmed in a reproducible ratios of actual treatment of breathing motion during treatment, and Duty Cycle, planned respiratory gated window. Minimizing an error of the treatment plan using 4DCT and enhance the respiratory training and respiratory signal monitoring for effective treatment it is determined to be necessary.

  • PDF

The variability of tumor motion and respiration pattern in Stereotactic Body RadioTherapy(SBRT) for Lung cancer patients (RPM SystemTM을 이용한 호흡 관찰의 유용성 평가)

  • Park, hyun jun;Bae, sun myeong;Baek, Geum Mun;Kang, tae young;Seo, Dong Rin
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.1
    • /
    • pp.17-25
    • /
    • 2016
  • Purpose : The purpose of this study is to evaluate the variability of tumor motion and respiration pattern in lung cancer patients undergoing Stereotactic Body RadioTherapy(SBRT) by using On-Board imager (OBI) system and Real-time Position Management (RPM) System. Materials and Methods : This study population consisted of 60 lung cancer patient treated with stereotactic body radiotherapy (48 Gy / 4 fractions). Of these, 30 were treated with gating (group 1) and 30 without gating(group2): typically the patients whose tumors showed three-dimensional respiratory motion > 10 mm were selected for gating. 4-dimensional Computed Tomography (4DCT). Cone Beam CT (CBCT) and Fluoroscopy images were used to measure the tumor motion. RPM system was used to evaluate the variability of respiration pattern on SBRT for group1. Results : The mean difference of tumor motion among 4DCT, CBCT and Fluoroscopy images in the cranio-caudal direction was 2.3 mm in group 1, 2. The maximum difference was 12.5 mm in the group 1 and 8.5 mm in group 2. The number of treatment fractions that patient's respiration pattern was within Upper-Lower threshold on SBRT in group 2 was 31 fractions. A patient who exhibited the most unstable pattern exceeded 108 times in a fraction Conclusion : Although many patients in group 1 and 2 kept the reproducibility of tumor motion within 5 mm during their treatment, some patients exhibited variability of tumor motion in the CBCT and Fluoroscopy images. It was possible to improve the accuracy of dose delivery in SBRT without gating for lung cancer patient by using RPM system.

  • PDF

Production and Assessing Usefulness of the Moving Phantom for Respiration Gated Radiotherapy (호흡동조 방사선치료용 팬텀의 제작 및 유용성 평가)

  • Lee, Yang-Hoon;Lee, Jae-Hee;Yoo, Suk-Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.2
    • /
    • pp.135-144
    • /
    • 2010
  • Purpose: The purpose of this study is that through production of phantom for respiration gated radiotherapy, assessing appropriacy of exposure dose for the therapy using RPM (Real-time Position Management). Materials and Methods: We located measurement object on the phantom for respiration gated radiotherapy made of 2 linear actuator, acrylic panel, stanchion, iron plate ets. to drive (up, down, front, back). Using 4D CT scan, we analyzed patient's respiration and reproduced the movement by computer. On the phantom, we located a 2D-Array (PTW) and an White water phantom (4.5 cm) and used DMLC (interval 2 cm) in the field size $10{\times}10\;cm$, then exposed 21EX X-ray 100 MU, in the case of phantom was (1) static (2) moving (3) gated using RPM respectively gantry $0^{\circ}$ and $90^{\circ}$ We measured with a 0.125 CC ionization chamber (PTW) on the phantom (7.5 cm) in the same condition. Results: Ionization chamber: There were within 0.3% of error with gating respiration and approximately 2% of error without gating in the same condition. 2D-Array: Gantry $90^{\circ}$, field size $10{\times}10\;cm$, using DMLC. There were within 3% of error with gating respiration and approximately 16% of error without gating. Conclusion: The phantom for respiration gated radiotherapy makes plans considering patient's movement, quantitative analysis of exposure dose and proper assessment therapy for IMRT patients using RPM possible.

  • PDF

Effectiveness of the Respiratory Gating System for Stereotectic Radiosurgery of Lung Cancer (Lung Cancer의 Stereotactic Radiosurgery시 Respiratory Gating system의 유용성에 대한 연구)

  • Song Heung Kwon;Kim Min Su;Yang Oh Nam;Park Cheol Su;Kwon Kyung Tae;Kim Jeong Man
    • 대한방사선치료학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.13-17
    • /
    • 2005
  • Introduction : For stereotactic radiosurgery (SRS) of a tumor in the region whose movement due to respiration is significant, like Lung lower lobe, the gated therapy, which delivers radiation dose to the selected respiratory phases when tumor motion is small, was peformed using the Respiratory gating system and its clinical effectiveness was evaluated. Methode and Materials : For two SRS patients with a tumor in Lung lower lobe, a marker block (infrared reflector) was attached on the abdomen. While patient' respiratory cycle was monitored with Real-time Position Management (RPM, Varian, USA), 4D CT was performed (10 phases per a cycle). Phases in which tumor motion did not change rapidly were decided as treatment phases. The treatment volume was contoured on the CT images for selected treatment phases using maximum intensity projection (MIP) method. In order to verify setup reproducibility and positional variation, 4D CT was repeated. Result : Gross tumor volume (GTV) showed maximum movement in superior-inferior direction. For patient $\#$1, motion of GTV was reduced to 2.6 mm in treatment phases ($30\%\~60\%$), while that was 9.4 mm in full phases ($0\%\~90\%$) and for patient $\#$2, it was reduced to 2.3 mm in treatment phases ($30\%\~70\%$), while it was 11.7 mm in full phases ($0\%\~90\%$). When comparing two sets of CT images, setup errors in all the directions were within 3 mm. Conclusion : Since tumor motion was reduced less than 5 mm, the Respiratory gating system for SRS of Lung lower lobe is useful.

  • PDF

Accuracy Evaluation of Tumor Therapy during Respiratory Gated Radiation Therapy (호흡동조방사선 치료 시 종양 치료의 정확도 평가)

  • Jang, Eun-Sung;Kang, Soo-Man;Lee, Chol-Soo;Kang, Se-Sik
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.2
    • /
    • pp.113-122
    • /
    • 2010
  • Purpose: To evaluate the accuracy of a target position at static and dynamic state by using Dynamic phantom for the difference between tumor's actual movement during respiratory gated radiation therapy and skin movement measured by RPM (Real-time Position Management). Materials and Methods: It self-produced Dynamic phantom that moves two-dimensionally to measure a tumor moved by breath. After putting marker block on dynamic phantom, it analyzed the amplitude and status change depending on respiratory time setup in advance by using RPM. It places marker block on dynamic phantom based on this result, inserts Gafchromic EBT film into the target, and investigates 5 Gy respectively at static and dynamic state. And it scanned investigated Gafchromic EBT film and analyzed dose distribution by using automatic calculation. Results: As a result of an analysis of Gafchromic EBT film's radiation amount at static and dynamic state, it could be known that dose distribution involving 90% is distributed within margin of error of 3 mm. Conclusion: As a result of an analysis of dose distribution's change depending on patient's respiratory cycle during respiratory gated radiation therapy, it is expected that the treatment would be possible within recommended margin of error at ICRP 60.

  • PDF

Evaluation of the Accuracy for Respiratory-gated RapidArc (RapidArc를 이용한 호흡연동 회전세기조절방사선치료 할 때 전달선량의 정확성 평가)

  • Sung, Jiwon;Yoon, Myonggeun;Chung, Weon Kuu;Bae, Sun Hyun;Shin, Dong Oh;Kim, Dong Wook
    • Progress in Medical Physics
    • /
    • v.24 no.2
    • /
    • pp.127-132
    • /
    • 2013
  • The position of the internal organs can change continually and periodically inside the body due to the respiration. To reduce the respiration induced uncertainty of dose localization, one can use a respiratory gated radiotherapy where a radiation beam is exposed during the specific time of period. The main disadvantage of this method is that it usually requests a long treatment time, the massive effort during the treatment and the limitation of the patient selection. In this sense, the combination of the real-time position management (RPM) system and the volumetric intensity modulated radiotherapy (RapidArc) is promising since it provides a short treatment time compared with the conventional respiratory gated treatments. In this study, we evaluated the accuracy of the respiratory gated RapidArc treatment. Total sic patient cases were used for this study and each case was planned by RapidArc technique using varian ECLIPSE v8.6 planning machine. For the Quality Assurance (QA), a MatriXX detector and I'mRT software were used. The results show that more than 97% of area gives the gamma value less than one with 3% dose and 3 mm distance to agreement condition, which indicates the measured dose is well matched with the treatment plan's dose distribution for the gated RapidArc treatment cases.

An Assessment of the Utility of Respiratory Synchronized Systems in the PET/CT Examination (PET-CT 검사 시 호흡 동조 시스템들의 유용성 평가)

  • Seong, Yong-Jun;Yoon, Seok-Hwan;Hyun, Jun-Ho;Lee, Hong-jae;Kim, Jin-Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.1
    • /
    • pp.34-38
    • /
    • 2017
  • Purpose During PET/CT examinations, the movements of internal organs caused by respiration are captured in images during multiple breathing cycles, resulting in the increases in tumor size and effects on SUV. Respiratory synchronized systems were used to evaluate tumor sizes and SUV changes. Materials and Methods Biograph mCT 64 was used for the equipment, and RPM and Anzai systems were used for the respiratory synchronized systems. We used point source and micro-phantom for an experimentation. We were performed on 12 patients who had solid tumors discovered at the base of the lung or at the top of the liver from August through September 2016. The PET images of the exhalation-to-breathing state and the CT images of the post-exhalation suspension state were gained to evaluate changes in radioactivity concentration (KBq/mL), SUVmax, cylinder diameter (mm), and tumor diameter (cm) under the conventional Static, RPM, and Anzai methods. Results The result of measuring the radioactivity concentration of the point source was RPM 94% and Anzai 91% against Static, respectively. In the two cylinders of different radioactivity in the micro-phantom, the SUVmax increased to RPM 61% and 78%, and Anzai 58% and 77% against Static, whereas the cylinder diameters decreased by RPM -26% and -28%, and Anzai -28% and -26%, each respectively. Among the patients, the SUVmax increased from a minimum of RPM 8.2% to a maximum of 94.4% against Static, and from a minimum of Anzai 7.6% to a maximum of 68.3%, respectively. As for the tumor diameters, a minimum of RPM -7.6% to a maximum of -28.9% were achieved, while the Anzai fell by a minimum of -9.6% to a maximum of -27.7%, respectively. There was no significant difference discovered in the phantom study between the RPM and Anzai, yet there was a meaningful difference in the patients' tumors (P<0.05). Conclusion The respiratory synchronized systems of RPM and Anzai yielded no significant difference in the phantom study in which the respiration was executed at regular intervals. However, it was discovered that the patients had a meaningful difference for the irregular respiratory cycle and inter-system differences. Still, the respiratory synchronized systems would be useful for the accurate diagnosis and SUV measurement as the tumor decreased in size against the existing Static and the SUV increased.

  • PDF