• Title/Summary/Keyword: Real-time Distributed Parallel Processing

Search Result 38, Processing Time 0.029 seconds

Real-Time IoT Big-data Processing for Stream Reasoning (스트림-리즈닝을 위한 실시간 사물인터넷 빅-데이터 처리)

  • Yun, Chang Ho;Park, Jong Won;Jung, Hae Sun;Lee, Yong Woo
    • Journal of Internet Computing and Services
    • /
    • v.18 no.3
    • /
    • pp.1-9
    • /
    • 2017
  • Smart Cities intelligently manage numerous infrastructures, including Smart-City IoT devices, and provide a variety of smart-city applications to citizen. In order to provide various information needed for smart-city applications, Smart Cities require a function to intelligently process large-scale streamed big data that are constantly generated from a large number of IoT devices. To provide smart services in Smart-City, the Smart-City Consortium uses stream reasoning. Our stream reasoning requires real-time processing of big data. However, there are limitations associated with real-time processing of large-scale streamed big data in Smart Cities. In this paper, we introduce one of our researches on cloud computing based real-time distributed-parallel-processing to be used in stream-reasoning of IoT big data in Smart Cities. The Smart-City Consortium introduced its previously developed smart-city middleware. In the research for this paper, we made cloud computing based real-time distributed-parallel-processing available in the cloud computing platform of the smart-city middleware developed in the previous research, so that we can perform real-time distributed-parallel-processing with them. This paper introduces a real-time distributed-parallel-processing method and system for stream reasoning with IoT big data transmitted from various sensors of Smart Cities and evaluate the performance of real-time distributed-parallel-processing of the system where the method is implemented.

From WiFi to WiMAX: Efficient GPU-based Parameterized Transceiver across Different OFDM Protocols

  • Li, Rongchun;Dou, Yong;Zhou, Jie;Li, Baofeng;Xu, Jinbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.1911-1932
    • /
    • 2013
  • Orthogonal frequency-division multiplexing (OFDM) has become a popular modulation scheme for wireless protocols because of its spectral efficiency and robustness against multipath interference. Although the components of various OFDM protocols are functionally similar, they remain distinct because of the characteristics of the environment. Recently, graphics processing units (GPUs) have been used to accelerate the signal processing of the physical layer (PHY) because of their great computational power, high development efficiency, and flexibility. In this paper, we describe the implementation of parameterized baseband modules using GPUs for two different OFDM protocols, namely, 802.11a and 802.16. First, we introduce various modules in the modulator/demodulator parts of the transmitter and receiver and analyze the computational complexity of each module. We then describe the integration of the GPU-based baseband modules of the two protocols using the parameterized method. GPU-based implementations are addressed to explain how to accelerate the baseband processing to archive real-time throughput. Finally, the performance results of each signal processing module are evaluated and analyzed. The experiments show that the GPU-based 802.11a and 802.16 PHY meet the real-time requirement and demonstrate good bit error ratio (BER) performance. The performance comparison indicates that our GPU-based implemented modules have better flexibility and throughput to the current ones.

Real Time Distributed Parallel Processing to Visualize Noise Map with Big Sensor Data and GIS Data for Smart Cities (스마트시티의 빅 센서 데이터와 빅 GIS 데이터를 융합하여 실시간 온라인 소음지도로 시각화하기 위한 분산병렬처리 방법론)

  • Park, Jong-Won;Sim, Ye-Chan;Jung, Hae-Sun;Lee, Yong-Woo
    • Journal of Internet Computing and Services
    • /
    • v.19 no.4
    • /
    • pp.1-6
    • /
    • 2018
  • In smart cities, data from various kinds of sensors are collected and processed to provide smart services to the citizens. Noise information services with noise maps using the collected sensor data from various kinds of ubiquitous sensor networks is one of them. This paper presents a research result which generates three dimensional (3D) noise maps in real-time for smart cities. To make a noise map, we have to converge many informal data which include big image data of geographical Information and massive sensor data. Making such a 3D noise map in real-time requires the processing of the stream data from the ubiquitous sensor networks in real-time and the convergence operation in real-time. They are very challenging works. We developed our own methodology for real-time distributed and parallel processing for it and present it in this paper. Further, we developed our own real-time 3D noise map generation system, with the methodology. The system uses open source softwares for it. Here in this paper, we do introduce one of our systems which uses Apache Storm. We did performance evaluation using the developed system. Cloud computing was used for the performance evaluation experiments. It was confirmed that our system was working properly with good performance and the system can produce the 3D noise maps in real-time. The performance evaluation results are given in this paper, as well.

Proposition and Evaluation of Parallelism-Independent Scheduling Algorithms for DAGs of Tasks with Non-Uniform Execution Time

  • Kirilka Nikolova;Atusi Maeda;Sowa, Masa-Hiro
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.289-293
    • /
    • 2000
  • We propose two new algorithms for parallelism-independent scheduling. The machine code generated from the compiler using these algorithms in its scheduling phase is parallelism-independent code, executable in minimum time regardless of the number of the processors in the parallel computer. Our new algorithms have the following phases: finding the minimum number of processors on which the program can be executed in minimal time, scheduling by an heuristic algorithm for this predefined number of processors, and serialization of the parallel schedule according to the earliest start time of the tasks. At run time tasks are taken from the serialized schedule and assigned to the processor which allows the earliest start time of the task. The order of the tasks decided at compile time is not changed at run time regardless of the number of the available processors which means there is no out-of-order issue and execution. The scheduling is done predominantly at compile time and dynamic scheduling is minimized and diminished to allocation of the tasks to the processors. We evaluate the proposed algorithms by comparing them in terms of schedule length to the CP/MISF algorithm. For performance evaluation we use both randomly generated DAGs (directed acyclic graphs) and DACs representing real applications. From practical point of view, the algorithms we propose can be successfully used for scheduling programs for in-order superscalar processors and shared memory multiprocessor systems. Superscalar processors with any number of functional units can execute the parallelism-independent code in minimum time without necessity for dynamic scheduling and out-of-order issue hardware. This means that the use of our algorithms will lead to reducing the complexity of the hardware of the processors and the run-time overhead related to the dynamic scheduling.

  • PDF

Analysis of Implementing Mobile Heterogeneous Computing for Image Sequence Processing

  • BAEK, Aram;LEE, Kangwoon;KIM, Jae-Gon;CHOI, Haechul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4948-4967
    • /
    • 2017
  • On mobile devices, image sequences are widely used for multimedia applications such as computer vision, video enhancement, and augmented reality. However, the real-time processing of mobile devices is still a challenge because of constraints and demands for higher resolution images. Recently, heterogeneous computing methods that utilize both a central processing unit (CPU) and a graphics processing unit (GPU) have been researched to accelerate the image sequence processing. This paper deals with various optimizing techniques such as parallel processing by the CPU and GPU, distributed processing on the CPU, frame buffer object, and double buffering for parallel and/or distributed tasks. Using the optimizing techniques both individually and combined, several heterogeneous computing structures were implemented and their effectiveness were analyzed. The experimental results show that the heterogeneous computing facilitates executions up to 3.5 times faster than CPU-only processing.

Development of Big-data Management Platform Considering Docker Based Real Time Data Connecting and Processing Environments (도커 기반의 실시간 데이터 연계 및 처리 환경을 고려한 빅데이터 관리 플랫폼 개발)

  • Kim, Dong Gil;Park, Yong-Soon;Chung, Tae-Yun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.4
    • /
    • pp.153-161
    • /
    • 2021
  • Real-time access is required to handle continuous and unstructured data and should be flexible in management under dynamic state. Platform can be built to allow data collection, storage, and processing from local-server or multi-server. Although the former centralize method is easy to control, it creates an overload problem because it proceeds all the processing in one unit, and the latter distributed method performs parallel processing, so it is fast to respond and can easily scale system capacity, but the design is complex. This paper provides data collection and processing on one platform to derive significant insights from various data held by an enterprise or agency in the latter manner, which is intuitively available on dashboards and utilizes Spark to improve distributed processing performance. All service utilize dockers to distribute and management. The data used in this study was 100% collected from Kafka, showing that when the file size is 4.4 gigabytes, the data processing speed in spark cluster mode is 2 minute 15 seconds, about 3 minutes 19 seconds faster than the local mode.

A Memory Intensive Real-time 3x3 Neighborhood processor for Image Processing (Memory Intensive 실시간 영상신호처리용 3 $\times$ 3 Neighborhood VLSI 처리기)

  • 김진홍;남철우;우성일;김용태
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.6
    • /
    • pp.963-971
    • /
    • 1990
  • This paper proposes a memory intensive VLSI architecture for the realization of real-time 3x3 neighborhood processor based on the distributed arithmetic. The proposed architecture is characterized by a bit serial and multi-kernel parallel processing which exploits the pixel kernel parallelism and concurrency. The chip implements 8 neighborhood processing elements in parallel with efficirnt input and output modules which operate concurrently. Besides the a4chitectural design of a neighborhood processor, the design methodology using module generator concept has been considered and MOGOT(MOdule Generator Oriented VLSI design Tool) has been constructed based on the workstation. Based on these design environments MOGOT, it has been shown that the main part of the suggested architecture can be designed efficiently using 2\ulcorner double metal CMOS technology. It includes design of input delay and data conversion module, look-up table for inner product operation, carry save accumulator, output data converter and delay module, and control module.

  • PDF

Development of Real time Air Quality Prediction System

  • Oh, Jai-Ho;Kim, Tae-Kook;Park, Hung-Mok;Kim, Young-Tae
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.73-78
    • /
    • 2003
  • In this research, we implement Realtime Air Diffusion Prediction System which is a parallel Fortran model running on distributed-memory parallel computers. The system is designed for air diffusion simulations with four-dimensional data assimilation. For regional air quality forecasting a series of dynamic downscaling technique is adopted using the NCAR/Penn. State MM5 model which is an atmospheric model. The realtime initial data have been provided daily from the KMA (Korean Meteorological Administration) global spectral model output. It takes huge resources of computation to get 24 hour air quality forecast with this four step dynamic downscaling (27km, 9km, 3km, and lkm). Parallel implementation of the realtime system is imperative to achieve increased throughput since the realtime system have to be performed which correct timing behavior and the sequential code requires a large amount of CPU time for typical simulations. The parallel system uses MPI (Message Passing Interface), a standard library to support high-level routines for message passing. We validate the parallel model by comparing it with the sequential model. For realtime running, we implement a cluster computer which is a distributed-memory parallel computer that links high-performance PCs with high-speed interconnection networks. We use 32 2-CPU nodes and a Myrinet network for the cluster. Since cluster computers more cost effective than conventional distributed parallel computers, we can build a dedicated realtime computer. The system also includes web based Gill (Graphic User Interface) for convenient system management and performance monitoring so that end-users can restart the system easily when the system faults. Performance of the parallel model is analyzed by comparing its execution time with the sequential model, and by calculating communication overhead and load imbalance, which are common problems in parallel processing. Performance analysis is carried out on our cluster which has 32 2-CPU nodes.

  • PDF

Improvement of Processing Speed for UAV Attitude Information Estimation Using ROI and Parallel Processing

  • Ha, Seok-Wun;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.155-161
    • /
    • 2021
  • Recently, researches for military purposes such as precision tracking and mission completion using UAVs have been actively conducted. In particular, if the posture information of the leading UAV is estimated and the mission UAV uses this information to follow in stealth and complete its mission, the speed of the posture information estimation of the guide UAV must be processed in real time. Until recently, research has been conducted to accurately estimate the posture information of the leading UAV using image processing and Kalman filters, but there has been a problem in processing speed due to the sequential processing of the processing process. Therefore, in this study we propose a way to improve processing speed by applying methods that the image processing area is limited to the ROI area including the object, not the entire area, and the continuous processing is distributed to OpenMP-based multi-threads and processed in parallel with thread synchronization to estimate attitude information. Based on the experimental results, it was confirmed that real-time processing is possible by improving the processing speed by more than 45% compared to the basic processing, and thus the possibility of completing the mission can be increased by improving the tracking and estimating speed of the mission UAV.

Real-Time Stock Price Prediction using Apache Spark (Apache Spark를 활용한 실시간 주가 예측)

  • Dong-Jin Shin;Seung-Yeon Hwang;Jeong-Joon Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.79-84
    • /
    • 2023
  • Apache Spark, which provides the fastest processing speed among recent distributed and parallel processing technologies, provides real-time functions and machine learning functions. Although official documentation guides for these functions are provided, a method for fusion of functions to predict a specific value in real time is not provided. Therefore, in this paper, we conducted a study to predict the value of data in real time by fusion of these functions. The overall configuration is collected by downloading stock price data provided by the Python programming language. And it creates a model of regression analysis through the machine learning function, and predicts the adjusted closing price among the stock price data in real time by fusing the real-time streaming function with the machine learning function.