• Title/Summary/Keyword: Real-car crash test

Search Result 21, Processing Time 0.022 seconds

A Study on Estimate of Bumper Damageability about Vehicle Shape on Car to Car Crash (차대차 충돌시 차량형상에 따른 범퍼 손상성 평가에 대한 연구)

  • Lee, Sang-Je;Jeong, Yun-Seok;Koo, Do-Hoi;Lee, Mun-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.79-83
    • /
    • 2006
  • The present low speed crash regulations and RCAR test for insurance estimate do not tend to reflect car crash occurred on a road. Therefore, car makers are trying to readjust test standard be similar to a real situation. Passenger cars and SUV vehicles on the market will be subject to this study for car to car crash. In addition, we will discuss improvement of test methods for a low speed crash and direction of bumper design by performing this impact analysis.

Analysis between Computer Simulation and Real-car Crash Test of Energy Absorption Facilities for Various Road Environments (다양한 환경에 적용 가능한 충격흡수시설의 시뮬레이션 분석 및 실물충돌시험 결과 분석)

  • No, Min Hyung;Park, Jea Hong;Seo, Chang Won;Sung, Jung Gon;Yun, Duk Geun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.399-407
    • /
    • 2022
  • Energy absorption facilities installed on roads should follow the performance standards of the real-car crash test of 'Installation and Maintenance Guidelines for Roadside Safety Facilities'. However, due to different installation conditions, such as differing structure widths on roads, some energy absorption facilities do not provide adequate performance. In order to apply varied environments on roads, an energy absorption structure was designed in this study with 150 mm height and four layers of W-shape guardrail at 200 mm intervals, and the performance was verified using LS-DYNA computer simulation. Through a real-car crash test, the performance of the facility designed by LS-DYNA was tested and was found to meet the performance of the CC2 category for crash cushions. The conclusion of the comparison demonstrates that the simulation and the real-car crash tests are both significant.

A Study on Human Injury Characteristics and Vehicle Body Deformation with Car to Car Crash Test for Crash Compatability (${\cdot}$${\cdot}$대형 중고 승용차량에 대한 차 대 차 충돌시험을 통한 차체변형 및 인체상해 특성에 관한 연구)

  • Lim, Jong-Hun;Park, In-Song;Heo, Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.135-141
    • /
    • 2005
  • Currently many safety assessment tests are conducted by crashing a vehicle against a rigid or deformable barrier. It is quite rational to evaluate crash performance of a vehicle in a barrier test in terms of vehicle stiffness and strength. However, there has been a lot of debate on whether barrier testing is a duplicate of real world crash collisions. One of the issues is car to car compatability. There are two essential subjects in compatability. One is partner-protection when crashing into another vehicle and the other is self-protection when struck by another vehicle. When considering a car to car frontal crash between a mini car and a large heavy car, it is necessary to evaluate human body stiffness of each vehicle. In this study, in order to evaluate the compatability of cars in car-to-car crashes, four tests were conducted. Test speed of each car is 48.3km/h, and the overlap of the mini and large car is $40\%$, and the overlap of the small cars is $100\%$. In all tests, only a drive dummy is used. The test results of the car to car crash test show that vehicle safety standard of mini car is not satisfied compared with large heavy car and HIC value of mini car is higher than large car. In this case observed that the relatively lower stiffness and weight of the mini car resulted in absorbing a large share of the total input energy of the system when crashed into the large heavy car.

Study on FWDB Frontal Vehicle Crash Test (FWDB 정면충돌시험에 대한 연구)

  • Kim, Joseph;Beom, Hyen-Kyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.31-37
    • /
    • 2010
  • In proportion to increasing interest in vehicle safety, many country have regulated vehicle safety and performed NCAP(New Car Assessment Program). However vehicles which had good results in these compliance and NCAP frontal crash test have caused problems such as the fork effect and over-riding in real car-to-car accidents. To complement these issues, new frontal crash test modes using new barrier like FWDB and PDB have been developed by EEVC WG15. In this paper, FWDB frontal crash test was performed and the result was compared with the full frontal crash test using the rigid wall in order to comprehend the characteristic of FWDB. The results of FWDB test were compared with one of USNCAP and KNCAP. Using USNCAP data, vehicle performance like deformation and wall force were studied. A comparative study of dummy injuries was made by using KNCAP result. The results showed that vehicle performance of FWDB test like displacement and effective acceleration was similar in spite of absorbing energy of FWDB due to the greater vehicle deformation of rigid wall test. In FWDB test, driver dummy head bottomed out but most of injuries were superior to the injury of rigid wall test.

A Parametric Study of Crash Scenario of Autonomous Vehicle and Database Construction (자율주행차 충돌시나리오 파라미터 분석과 차대차 충돌해석 DB 구성)

  • Young Myoung So;Ho Kim;Junsuk Bae
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.4
    • /
    • pp.39-47
    • /
    • 2023
  • Research on the safety of autonomous vehicle is being conducted in various countries, including the European Union, and computer simulation techniques so called 'Virtual Tool Chain' are mainly used. As part of the crash safety study of autonomous vehicle, 25 car to car collision scenarios were provided as a result of a real accident-based accident reproduction analysis study conducted by a domestic research institution, and a vehicle crash analysis was performed using the FE car to car model of the Honda Accord. In order to analyze the results of the car to car simulation and to construct a database, major crash parameters were selected as impact speed, angle, location, and overlap, and a method of defining them in an indexed form was presented. In order to compare the crash severity of each scenario, a value obtained by integrating the resultant acceleration measured by the ACU of the vehicle was applied. The equivalent collision test mode was derived by comparing the crash severity of the regulation test mode, 30 deg rigid barrier mode, in the same way.

Robust Design of a Driver-Side Airbag Using the Taguchi Method (다구찌법을 이용한 운전석 에어백의 강건설계)

  • 이권희;주원식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.131-138
    • /
    • 2004
  • In the proto design stage of a new car, the performances of an occupant protection system can be evaluated by CAE even though the real test should be carried out. The number of the real test is reduced by the exact predictions followed by the appropriate design recommendation. However, the existing researches using CAE in predicting the performances do not consider the uncertainties of parameters. That often leads to inconsistency between test and CAE. In this research, the robust design of a protection system such as airbag and load limiter is suggested considering the frontal crash. The parameter design scheme of the Taguchi method is introduced to obtain the robust design of arbitrary airbag and load limiter. It is performed based on the frontal crash test condition of US-NCAP with an arbitrary passenger car. The variances of the performances such as HIC, chest acceleration and probability of combined injury are calculated by the outer array and the Taylor series expansion. Through the analysis of the Taguchi method, the robust optimum is determined.

A Study on the Neck Injury in Low Speed Rear Impact through the Real Car Test (실차시험을 통한 저속 추돌시 목상해 연구)

  • JO, H.C.;PARK, I.S.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.49-56
    • /
    • 2011
  • The neck injury occupies the most of injury that happened by the rear impact car accident. This study was analyzed about influence of the neck injury in low speed rear impact and car crash accident investigation. There is no neck injury in low speed side rear impact. On the other hand, there is initial neck injury symptom of 10 % but no long-term neck injury symptom in low speed offset rear impact. It appeared that the possibility of neck injury in low speed rear impact is low. For the more study about the neck injury, it should be evaluate the effects of the car body structure, frame structure and rear crash pattern.

Design of Occupant Protection Equipment for Passenger Car Using Taguchi Method (다구찌법을 이용한 자동차 승객 보호 장구의 설계)

  • 이권희;주원식;이주영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.299-304
    • /
    • 2003
  • The design of an occupant protection equipment has been considered as the important process in developing a new car since the crash performance plays an important role on the market. The cost is increased when an unexpected real test is carried out in the proto-design stage. Thus, the exact prediction of a crash performance can reduce the number of full-car test. In this research, the robust design of an airbag system considering the frontal crash is suggested to predict the more reliable responses. On the contrary, most existing researches do not consider the uncertainties. The uncertainties treated in this research are the tolerances of the vent hole, the time to fire and the length of a strap in airbag and the tolerance of the load limiter load in seat belt. The Taguchi method is utilized to determine the robust optimum of each parameter

  • PDF

An Experimental and FEA on Crashworthiness of Rolling Stock (철도차량의 Crashworthiness에 관한 실험 및 해석적 연구)

  • Park, Kyoung-Huan;Lee, Jung-Su;Lee, Jang-Uk;Park, Geun-Su
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2040-2045
    • /
    • 2008
  • The priority of Crashworthiness concept for rolling stock is progressively increasing to reduce the damage of drivers and passengers as well as the car. For the first step of this research, the analysis of the crash elements have been performed. Also the longitudinal collapse force and mode is important point for whole carbody structure to guarantee the lower force at end part rather than the main passenger area. The carbody quasi-static collapse analysis and real test has been performed in the research. The crash elements FEA and test has been performed as well. After the initial Analysis and test, the correlation analysis between the FEA and test has been performed by FEA tunning. All this result will be used for real crashworthiness design for carbody structure.

  • PDF

Crash Discrimination Algorithm with Two Crash Severity Levels Based on Seat-belt Status (안전띠 착용 유무에 근거한 두 단계의 충돌 가혹도 수준을 갖는 충돌 판별 알고리즘)

  • 박서욱;이재협
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.148-156
    • /
    • 2003
  • Many car manufacturers have frequently adopted an aggressive inflator and a lower threshold speed for airbag deployment in order to meet an injury requirement for unbolted occupant at high speed crash test. Consequently, today's occupant safety restraint system has a weakness due to an airbag induced injury at low speed crash event. This paper proposes a new crash algorithm to improve the weakness by suppressing airbag deployment at low speed crash event in case of belted condition. The proposed algorithm consists of two major blocks-crash severity algorithm and deployment logic block. The first block decides crash severity with two levels by means of velocity and crash energy calculation from acceleration signal. The second block implemented by simple AND/OR logic combines the crash severity level and seat belt status information to generate firing commands for airbag and belt pretensioner. Furthermore, it can be extended to adopt additional sensor information from passenger presence detection sensor and safing sensor. A simulation using real crash data for a 1,800cc passenger vehicle has been conducted to verify the performance of proposed algorithm.