• Title/Summary/Keyword: Real-Time polymerase chain reaction (PCR)

Search Result 465, Processing Time 0.032 seconds

Monitoring of Benzimidazole Resistance in Botrytis cinerea Isolates from Strawberry in Korea and Development of Detection Method for Benzimidazole Resistance

  • Geonwoo Kim;Doeun Son;Sungyu Choi;Haifeng Liu;Youngju Nam;Hyunkyu Sang
    • The Plant Pathology Journal
    • /
    • v.39 no.6
    • /
    • pp.614-624
    • /
    • 2023
  • Botrytis cinerea is a major fungal plant pathogen that causes gray mold disease in strawberries, leading to a decrease in strawberry yield. While benzimidazole is widely used as a fungicide for controlling this disease, the increasing prevalence of resistant populations to this fungicide undermines its effectiveness. To investigate benzimidazole resistant B. cinerea in South Korea, 78 strains were isolated from strawberries grown in 78 different farms in 2022, and their EC50 values for benzimidazole were examined. As a result, 64 strains exhibited resistance to benzimidazole, and experimental tests using detached strawberry leaves and the plants in a greenhouse confirmed the reduced efficacy of benzimidazole to control these strains. The benzimidazole resistant strains identified in this study possessed two types of mutations, E198A or E198V, in the TUB2 gene. To detect these mutations, TaqMan probes were designed, enabling rapid identification of benzimidazole resistant B. cinerea in strawberry and tomato farms. This study utilizes TaqMan real-time polymerase chain reaction analysis to swiftly identify benzimidazole resistant B. cinerea, thereby offering the possibility of effective disease management by identifying optimum locations and time of application.

Production of $TGF-{\beta}1$ as a Mechanism for Defective Antigen-presenting Cell Function of Macrophages Generated in vitro with M-CSF

  • Lee, Jae-Kwon;Lee, Young-Ran;Lee, Young-Hee;Kim, Kyung-Jae;Lee, Chong-Kil
    • IMMUNE NETWORK
    • /
    • v.9 no.1
    • /
    • pp.27-33
    • /
    • 2009
  • Macrophages generated in vitro using macrophage-colony stimulating factor (M-CSF) and interleukin (IL)-6 from bone marrow cells (BM-Mp) are defective in antigen presenting cell (APC) function as shown by their ability to induce the proliferation of anti-CD3 mAb-primed syngeneic T cells. However, they do express major histocompatibility (MHC) class I and II molecules. accessory molecules and intracellular adhesion molecules. Here we demonstrate that the defective APC function of macrophages is mainly due to production of $TGF-{\beta}1$ by BM-Mp. Methods: Microarray analysis showed that $TGF-{\beta}1$ was highly expressed in BM-Mp, compared to a macrophage cell line, B6D. which exerted efficient APC function. Production of $TGF-{\beta}1$ by BM-Mp was confirmed by neutralization experiments of $TGF-{\beta}1$ as well as by real time-polymerase chain reaction (PCR). Results: Addition of $anti-TGF-{\beta}1$ monoclonal antibody to cultures of BM-Mp and anti-CD3 mAb-primed syngeneic T cells efficiently induced the proliferation of syngeneic T cells. Conversely, the APC function of B6D cells was almost completely suppressed by addition of $TGF-{\beta}1$. Quantitative real time-PCR analysis also confirmed the enhanced expression of $TGF-{\beta}1$ in BM-Mp. Conclusion: The defective APC function of macrophages generated in vitro with M-CSF and IL-6 was mainly due to the production of $TGF-{\beta}1$ by macrophages.

Microarray Analysis of Gene Expression Profiles in Response to Treatment with Melatonin in Lipopolysaccharide Activated RAW 264.7 Cells

  • Ban, Ju-Yeon;Kim, Bum-Sik;Kim, Soo-Cheol;Kim, Dong-Hwan;Chung, Joo-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.1
    • /
    • pp.23-29
    • /
    • 2011
  • Melatonin, which is the main product of the pineal gland, has well documented antioxidant and immune-modulatory effects. Macrophages produce molecules that are known to play roles in inflammatory responses. We conducted microarray analysis to evaluate the global gene expression profiles in response to treatment with melatonin in lipopolysaccharide (LPS) activated RAW 264.7 macrophage cells. In addition, eight genes were subjected to real-time reverse transcription polymerase chain reaction (RT-PCR) to confirm the results of the microarray. The cells were treated with LPS or melatonin plus LPS for 24 hr. LPS induced the up-regulation of 1073 genes and the down-regulation of 1144 genes when compared to the control group. Melatonin pretreatment of LPS-stimulated RAW 264.7 cells resulted in the down regulation of 241 genes and up regulation of 164 genes. Interestingly, among genes related to macrophage-mediated immunity, LPS increased the expression of seven genes (Adora2b, Fcgr2b, Cish, Cxcl10, Clec4n, Il1a, and Il1b) and decreased the expression of one gene (Clec4a3). These changes in expression were attenuated by melatonin. Furthermore, the results of real-time PCR were similar to those of the microarray. Taken together, these results suggest that melatonin may have a suppressive effect on LPS-induced expression of genes involved in the regulation of immunity and defense in RAW 264.7 macrophage cells. Moreover, these results may explain beneficial effects of melatonin in the treatment of various inflammatory conditions.

Tributyltin increases the expression of apoptosis- and adipogenesis-related genes in rat ovaries

  • Lee, Hyo-Jin;Lim, So-Jeong;Yun, Su-Jin;Yoon, A-Young;Park, Ga-Young;Yang, Hyun-Won
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.39 no.1
    • /
    • pp.15-21
    • /
    • 2012
  • Objective: Tributyltin (TBT), an endocrine disrupting chemical, has been reported to decrease ovarian function by causing apoptosis in the ovary, but the mechanism is not fully understood. Therefore, we examined whether TBT increases the expression of adipogenesis-related genes in the ovary and the increased expression of these genes is associated with apoptosis induction. Methods: Three-week-old Sprague-Dawley rats were orally administered TBT (1 or 10 mg/kg body weight) or sesame oil as a control for 7 days. The ovaries were obtained and weighed on day 8, and then they were fixed for terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) or frozen for RNA extraction. Using the total RNA of the ovaries, adipogenesis- and apoptosis-related genes were analyzed by real-time polymerase chain reaction (PCR). Results: The ovarian weight was significantly decreased in rats administered 10 mg/kg TBT compared to that in control rats. As determined by the TUNEL assay, the number of apoptotic follicles in ovary was significantly increased in rats administered 10 mg/kg TBT. The real-time PCR results showed that the expression of adipogenesis-related genes such as $PPAR{\gamma}$, ${\alpha}P2$, CD36, and PEPCK was increased after TBT administration. In addition, apoptosis-related genes such as $TNF{\alpha}$ and TNFR1 were expressed more in the TBT-administered rats compared with the control rats. Conclusion: The present study demonstrates that TBT induces the expression of adipogenesis- and apoptosis-related genes in the ovary leading to apoptosis in the ovarian follicles. These results suggest that the increased expression of adipogenesis-related genes in the ovary by TBT exposure might induce apoptosis resulting in a loss of ovarian function.

Notochordal Cells Influence Gene Expression of Inflammatory Mediators of Annulus Fibrosus Cells in Proinflammatory Cytokines Stimulation

  • Moon, Hong-Joo;Joe, Hoon;Kwon, Taek-Hyun;Choi, Hye-Kyoung;Park, Youn-Kwan;Kim, Joo-Han
    • Journal of Korean Neurosurgical Society
    • /
    • v.48 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Objective : Notochordal cells in the intervertebral disc interact with nucleus pulposus (NP) cells and support the maintenance of disc homeostasis by regulation of matrix production. However, the influence of notochordal cells has not been evaluated in the annulus fibrosus (AF), which is the primary pain generator in the disc. We hypothesized that the notochordal cell has the capacity to modulate inflammatory mediators secreted by AF cells secondary to stimulation. Methods : Notochordal and AF cells were isolated from adult New Zealand white rabbits. AF pellets were cultured with notochordal cell clusters or in notochordal cell-conditioned media (NCCM) for 24 or 48 hours with proinflammatory cytokines at varying concentrations. Gene expression in AF pellets were assayed for nitric oxide synthase (iNOS), cyclo-oxygenase (COX)-2, and interleukin (IL)-6 by real time reverse transcriptase polymerase chain reaction (RT-PCR). Results : AF pellet in NCCM significantly decreased the iNOS and COX-2 messenger ribonucleic acid (mRNA) levels compared to AF pellets alone and AF pellets with notochordal cells (p < 0.05). AF pellet resulted in dose-dependent iNOS and COX-2 expression in response to IL-$1{\beta}$, stimulation, demonstrating that 1 ng/ml for 24 hours yielded a maximal response. AF pellet in NCCM significantly decreased the expression of iNOS and COX-2 in response to 1ng/ml IL-$1{\beta}$, stimulation at 24 hours (p < 0.05). There was no difference in IL-6 expression compared to AF pellets alone or AF pellets with notochordal cell clusters. Conclusion : We conclude that soluble factors from notochordal cells mitigate the gene expression of inflammatory mediators in stimulated AF, as expected after annular injury, suggesting that notochordal cells could serve as a novel therapeutic approach in symptomatic disc development.

Compressive force regulates ephrinB2 and EphB4 in osteoblasts and osteoclasts contributing to alveolar bone resorption during experimental tooth movement

  • Hou, Jianhua;Chen, Yanze;Meng, Xiuping;Shi, Ce;Li, Chen;Chen, Yuanping;Sun, Hongchen
    • The korean journal of orthodontics
    • /
    • v.44 no.6
    • /
    • pp.320-329
    • /
    • 2014
  • Objective: To investigate the involvement of ephrinB2 in periodontal tissue remodeling in compression areas during orthodontic tooth movement and the effects of compressive force on EphB4 and ephrinB2 expression in osteoblasts and osteoclasts. Methods: A rat model of experimental tooth movement was established to examine the histological changes and the localization of ephrinB2 in compressed periodontal tissues during experimental tooth movement. RAW264.7 cells and ST2 cells, used as precursor cells of osteoclasts and osteoblasts, respectively, were subjected to compressive force in vitro. The gene expression of EphB4 and ephrinB2, as well as bone-associated factors including Runx2, Sp7, NFATc1, and calcitonin receptor, were examined by quantitative real-time polymerase chain reaction (PCR). Results: Histological examination of the compression areas of alveolar bone from experimental rats showed that osteoclastogenic activities were promoted while osteogenic activities were inhibited. Immunohistochemistry revealed that ephrinB2 was strongly expressed in osteoclasts in these areas. Quantitative real-time PCR showed that mRNA levels of NFATc1, calcitonin receptor, and ephrinB2 were increased significantly in compressed RAW264.7 cells, and the expression of ephrinB2, EphB4, Sp7, and Runx2 was decreased significantly in compressed ST2 cells. Conclusions: Our results indicate that compressive force can regulate EphB4 and ephrinB2 expression in osteoblasts and osteoclasts, which might contribute to alveolar bone resorption in compression areas during orthodontic tooth movement.

Acute Toxicity Assessment in Zebrafish Danio rerio of Arsenic-rich Extracts from Three Species of Seaweeds (제브라피쉬(Danio rerio)를 이용한 비소 고함류 3종 해조류 추출물의 급성 독성평가)

  • Yang, Hye-Won;Kim, Eun-A;Kim, Seo-Young;Jeon, You-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.1
    • /
    • pp.31-41
    • /
    • 2018
  • Seaweeds are composed of a variety of bioactive substances, including polysaccharides, pigments, minerals, peptides, and polyphenols. Among these substances, the arsenic content of seaweeds has been a significant cause for concern. The present study evaluated the toxicity of arsenic from three species of seaweed using a zebrafish Danio rerio model. The arsenic-rich extracts were obtained from Ecklonia cava (ECAE), Undaria pinnatifida (UPAE) and Hizikia fusiformis (HFAE) using a solvent of 50% methanol and 1% $HNO_3$. We investigated the toxicity of the arsenic-rich extracts in zebrafish embryos through survival rate, heart rate, yolk sac edema size, cell death, reactive oxygen species (ROS) production and real-time polymerase chain reaction (PCR). The hepatotoxicity of arsenic-rich extracts was assessed in the liver of adult zebrafish through real-time PCR and histopathology. The survival rates of embryos and adult zebrafish showed no significant changes at any concentration. At 100 ppm, embryos did not exhibit significant differences in heart rate, yolk sac edema size, cell death or ROS production. In addition, apoptosis-related genes in larvae and liver tissue were unaffected by treatment with arsenic-rich extracts. These data will help clarify that developmental changes, hepatic oxidative stress, and apoptosis are not associated with toxicity from arsenic-rich seaweed extracts in a zebrafish model.

Induction of Heat Shock Proteins and Antioxidant Enzymes in 2,3,7,8-TCDD-Induced Hepatotoxicity in Rats

  • Kim, Hyun-Sook;Park, So-Young;Yoo, Ki-Yeol;Lee, Seung Kwan;Jung, Woon-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.469-476
    • /
    • 2012
  • 2,3,7,8-Tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) is an environmental toxicant with a polyhalogenated aromatic hydrocarbon structure and is one of the most toxic man-made chemicals. Exposure to 2,3,7,8-TCDD induces reproductive toxicity, immunotoxicity, and hepatotoxicity. In this study, we evaluated how 2,3,7,8-TCDD-induced hepatotoxicity affect the expression of heat shock proteins and antioxidant enzymes using the real-time polymerase chain reaction (PCR) in rat. 2,3,7,8-TCDD increased heat shock protein (Hsp27, ${\alpha}$-B-crystallin, Mortalin, Hsp105, and Hsp90s) and antioxidant enzymes (SOD-3, GST and catalase) expression after a 1 day exposure in livers of rats, whereas heat shock protein (${\alpha}$-B-crystallin, Hsp90, and GRP78) and antioxidant enzymes (SOD-1, SOD-3, catalase, GST, and GPXs) expression decreased on day 2 and then slowly recovered back to control levels on day 8. These results suggest that heat shock proteins and antioxidant enzymes were induced as protective mechanisms against 2,3,7,8-TCDD induced hepatotoxicity, and that prolonged exposure depressed their levels, which recovered to control levels due to reduced 2,3,7,8-TCDD induced hepatotoxicity.

Mouse Nerve Growth Factor Facilitates the Growth of Interspinal Schwannoma Cells by Activating NGF Receptors

  • Liu, Shu Yi;Liu, Sheng Ze;Li, Yu;Chen, Shi
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.6
    • /
    • pp.626-634
    • /
    • 2019
  • Objective : Nerve growth factor (NGF) is a member of the neurotrophic factor family and plays a vital role in the physiological processes of organisms, especially in the nervous system. Many recent studies have reported that NGF is also involved in the regulation of tumourigenesis by either promoting or suppressing tumor growth, which depends on the location and type of tumor. However, little is known regarding the effect of NGF on interspinal schwannoma (IS). In the present study, we aimed to explored whether mouse nerve growth factor (mNGF), which is widely used in the clinic, can influence the growth of interspinal schwannoma cells (ISCs) isolated from IS in vitro. Methods : ISCs were isolated, cultured and identified by S-100 with immunofluorescence analysis. S-100-positive cells were divided into five groups, and separately cultured with various concentrations of mNGF (0 [phosphate buffered saline, PBS], 40, 80, 160, and 320 ng/mL) for 24 hours. Western blot and quantantive real time polymerase chain reaction (PCR) were applied to detect tyrosine kinase A (TrkA) receptor and p75 neurotrophin receptor ($p75^{NTR}$) in each group. Crystal violet staining was selected to assess the effect of mNGF (160 ng/mL) on ISCs growth. Results : ISCs growth was enhanced by mNGF in a dose-dependent manner. The result of crystal violet staining revealed that it was significantly strengthened the cells growth kinetics when cultured with 160 ng/mL mNGF compared to PBS group. Western blot and quantantive real time PCR discovered that TrkA receptor and mRNA expression were both up-regualated under the condition of mNGF, expecially in 160 ng/mL, while the exoression of $p75^{NTR}$ demonstrated no difference among groups. Conclusion : From these data, we conclude that exogenous mNGF can facilitate ISC growth by activating both TrkA receptor and $p75^{NTR}$. In addition, patients who are suffering from IS should not be administered mNGF in the clinic.

The anti-inflammatory effects of ethanol extract of Allium Hookeri cultivated in South Korea (국내산 삼채 에탄올 추출물의 항염증 효과)

  • Bae, Gi-Choon;Bae, Dae-Yeoll
    • The Korea Journal of Herbology
    • /
    • v.27 no.6
    • /
    • pp.55-61
    • /
    • 2012
  • Objectives : Allium Hookeri (AH) is a traditional herb to treat inflammatory diseases in India and Myanmar. Recently, AH cultivation was succeeded in South Korea. This study was performed to evaluate the anti-inflammatory effects of Korean AH in RAW264.7 cells, mouse macrophage cell line. Methods : To evaluate the anti-inflammatory effects of root of AH, we prepared the 70% ethanol extract, then we examined the productions of nitrite, and pro-inflammatory cytokines. To examine the nitrite, and cytokines, the RAW264.7 cells were treated with AH, then stimulated with lipopolysaccharide (LPS, 500 ng/ml) for 24 h. Then the cells were harvested for griess assay, ELISA and real-time reverse transcription polymerase chain reaction (RT-PCR). Also to detect the ability of AH to induce heme oxygenase-1 (HO-1), we examined the HO-1 expression using real time RT-PCR and western blot. Furthermore, we examined the mitogen activated-protein kinases (MAPKs) and nuclear factor kappa B (NF-${\kappa}B$) activation to find out the underlying mechanisms. Results : AH ethanol extract significantly inhibited the productions of nitrite and interleukin (IL)-$1{\beta}$. AH treatment increased the HO-1 expression dramatically at 1 h, then peaked at 3 h. When the HO-1 was inhibited by tin (Sn) protoporphryin-IX (SnPP), the anti-inflammatory action of AH was reversed. AH treatment inhibited the activation of p38, but not extracelluar signal-regulated kinase (ERK 1/2) and c-Jun $NH_2$-terminal kinase (JNK) and also the degradation of inhibitory kappa B a (Ik-$B{\alpha}$) in the LPS-stimulated RAW 264.7 cells. Conclusions : These data could suggest that AH exerts anti-inflammatory influences through up-regulation of HO-1 and deactivation of p38.