• Title/Summary/Keyword: Real-Time Safety Assessment

Search Result 122, Processing Time 0.032 seconds

Prevalence of MSDs and Postural Risk Assessment in Floor Mopping Activity Through Subjective and Objective Measures

  • Naik, Gouri;Khan, Mohammed Rajik
    • Safety and Health at Work
    • /
    • v.11 no.1
    • /
    • pp.80-87
    • /
    • 2020
  • Background: Residential and commercial cleaning is a part of our daily routine to maintain sanitation around the environment. Health care of professionals involved in such cleaning activities has become a major concern all over the world. The present study investigates the risk of musculoskeletal disorders in professional cleaners involved in floor mopping tasks. Methods: A cross-sectional study was performed on 132 mopping professionals using a modified Nordic questionnaire. The Pearson correlation test was implemented to study the association of perceived pain with work experience. The muscle strain and postural risk were evaluated by means of three-channel electromyography and real-time motion capture respectively of 15 professionals during floor mopping. Results: Regarding musculoskeletal injuries, risk was reported majorly in the right hand, lower back, left wrist, right shoulder, left biceps, and right wrist of the workers. Work experience had a low negative association with MSDs in the left wrist, right wrist, right elbow, lower back, and right lower arm (p < 0.01). Surface EMG showed occurrence of higher muscle activity in upper trapezius and biceps brachii (BB) muscles of the dominant hand and flexor carpi radialis and BB muscles of the nondominant hand positioned at the upper and lower portion of the mop rod, respectively. Conclusion: Ergonomic mediations should be executed to lessen the observed risk of musculoskeletal injuries in this professional group of workers.

Development on Fuzzy-AHP Ranking Risk Assessment Model for the monitoring systems (관제시스템 구축을 위한 Fuzzy-AHP 위험 순위 평가 모델 개발)

  • Chung, Sung-Hak;Park, Tae-Joon
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.2
    • /
    • pp.51-59
    • /
    • 2011
  • The objective of this study is to develop an evaluation model for the National highway risky areas. Thus, for the purposes of doing this, National highway risky area evaluated targeting to provide determination ranking and suggesting rival-superiority factors as well as under-inferiority factors in ten National highway risky areas. This study developed for modules of risky areas evaluation, using fuzzy set theory and analytic hierarchy process for evaluation model of National highway risky area in transport environment. The preceding studies assess risk analysis through analysis of causal relationships by National highway safety sector not only handles rating scale development suitable for assessment area by referring to accident frequency model but also geometric structures model. As result of this study, this model of Fuzzy Ahp Risk Analysis (FARA) apply for programmable design in real time processing through easily derive strategy for improvement activities to provide a decision-making effectively. Furthermore, this study contributes frame for improvements of National highway construction for renovation's priority strategy as well as future's policy schemes.

Development of RBI Procedures and Implementation of a Software Based on API Code (III) - Quantitative Approach (API 기준에 근거한 RBI 절차 개발 및 소프트웨어의 구현 (III) - 정량적 접근법 -)

  • 송정수;심상훈;최송천;윤기봉
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.56-63
    • /
    • 2003
  • During the last decade, effort has been made f3r reducing maintenance cost for aged equipments and ensuring safety, efficiency and profitability of petrochemical and refinery plants. Hence, it was required to develop advanced methods which meet this need. RBI(Risk Based Inspection) methodology is one of the most promising technology satisfying the requirements in the field of integrity management. In this study, a quantitative assessment algorithm fir RBI based on the API 581 code was reconstructed for developing an RBI software. The user-friendly realRBI software is developed with a module for evaluating quantitative risk md financial risk using the potential consequence and the likelihood. Also, inspection planning module for inspection time and inspection method are included in it.

A Study on the Optimum Navigation Route Safety Assessment System using Real Time Weather Forecasting (실시간 기상 정보를 이용한 최적 항로 안전 평가 시스템의 연구)

  • Choi, Kyong-Soon;Park, Myung-Kyu;Lee, Jin-Ho;Park, Gun-Il
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.05a
    • /
    • pp.203-210
    • /
    • 2007
  • This paper treats optimal route safety assessment system at seaway based on weather forecasting data through INMARSAT. Since early times, captain have been sailing to select the optimum route considering the weather, ship loading status condition and operational scheduling empirically. However, it is rare to find digitalized onboard route support system whereas weather facsimile or wave and swell chart are utilized for the officer, based on captain's experience. In this paper, optimal route safety assessment system which is composed of voyage efficiency and safety component is introduced. Optimum route minimized ETA(estimated time of arrival) and fuel consumption that shipping company. and captain are requiring to evaluate for efficient voyage considering speed loss and power increase based on wave added resistance of ship. In the view point of safety, seakeeping prediction is performed based on 3 dimensional panel method Basically, the weather forecast is assumed to be prepared previously in order to operate this system.

  • PDF

The training system based on virtual environments to protect workers and to prevent incidents and accidents during decommissioning of nuclear facilities (원자력시설 해체 작업자 보호 및 사고 예방을 위한 가상현실 기반의 훈련 시스템)

  • Jeong, KwanSeong;Moon, Jei-Kwon;Choi, Byung-Seon;Yoon, TaeMan
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2015.11a
    • /
    • pp.294-297
    • /
    • 2015
  • Decommissioning of nuclear facilities should be accomplished by assuring the safety of workers because decommissioning activities of nuclear facilities are under high radioactivity and work difficulty. It is necessary that before decommissioning, the radiation exposure dose of workers has to be evaluated and assessed under the principle of ALARA (as low as reasonably achievable). Furthermore, to improve the proficiency of decommissioning environments, method and system need to be developed. The legacy methods of exposure dose measurement and assessment had the limitations to modify and simulate the exposure dose to workers prior to practical activities because those should be accomplished without changes of working routes under predetermined scenarios. To simulate a lot of decommissioning scenarios, decommissioning environments were designed in virtual reality. To simulate and assess the exposure dose to workers, human model also was designed in virtual environments. These virtual decommissioning environments made it possible to real-time simulate and assess the exposure dose to workers. It can be concluded that this system is able to protect from accidents and enable workers to improve his familiarization about working environments. It is expected that this system can reduce human errors because workers are able to improve the proficiency of hazardous working environments due to virtual training like real decommissioning situations. In the end, the safety during decommissioning of nuclear facilities will be guaranteed under the principle of ALARA.

  • PDF

Constructing a digital twin for estimating the response and load of a piping system subjected to seismic and arbitrary loads

  • Dongchang Kim;Gungyu Kim;Shinyong Kwag;Seunghyun Eem
    • Smart Structures and Systems
    • /
    • v.31 no.3
    • /
    • pp.275-281
    • /
    • 2023
  • In recent years, technological developments have rapidly increased the number of complex structures and equipment in the industrial. Accordingly, the prognostics and health monitoring (PHM) technology has become significant. The safety assessment of industrial sites requires data obtained by installing a number of sensors in the structure. Therefore, digital twin technology, which forms the core of the Fourth Industrial Revolution, is attracting attention in the safety field. The research on digital twin technology of structures subjected to seismic loads has been conducted recently. Hence, this study proposes a digital twin system that estimates the responses and arbitrary load in real time by utilizing the minimum sensor to a pipe that receives a seismic and arbitrary load. To construct the digital twin system, a finite-element model was created considering the dynamic characteristics of the pipe system, and then updating the finite-element model. In addition, the calculation speed was improved using a finite-element model that applied the reduced-order modeling (ROM) technology to achieve real-time performance. The constructed digital twin system successfully and rapidly estimated the load and the point where the sensor was not attached. The accuracy of the constructed digital twin system was verified by comparing the response of the digital twin model with that derived by using the load estimated from the digital twin model as input in the finite-element model.

Recent Advances in Structural Health Monitoring

  • Feng, Maria Q.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.6
    • /
    • pp.483-500
    • /
    • 2007
  • Emerging sensor-based structural health monitoring (SHM) technology can play an important role in inspecting and securing the safety of aging civil infrastructure, a worldwide problem. However, implementation of SHM in civil infrastructure faces a significant challenge due to the lack of suitable sensors and reliable methods for interpreting sensor data. This paper reviews recent efforts and advances made in addressing this challenge, with example sensor hardware and software developed in the author's research center. It is proposed to integrate real-time continuous monitoring using on structure sensors for global structural integrity evaluation with targeted NDE inspection for local damage assessment.

A Study on the Risk Assessment for Strengthening Management Safety of Hydrogen Fueling Station (수소충전소의 경영안전성 강화를 위한 위험성평가 추가 항목 연구)

  • Lee, Jang Won;Kim, Chang Soo
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.3
    • /
    • pp.520-531
    • /
    • 2022
  • Purpose: Based on the risk evaluation of hydrogen fueling stations, this study aims to find a plan to strengthen management safety by examining profitability and management risk, which are major concerns of employers. Method: The risk evaluation was divided into 'acceptable risk' and 'allowable risk' over time from the stage of installation of hydrogen fueling stations, and compared and analyzed with the results of existing studies. Result: Existing studies have been appropriately applied to the risk assessment performed at the stage of installing hydrogen fueling stations. However, possible risks could be found at the operational stage. In other words, it was derived that an evaluation of management risk was also necessary. And through this, it was confirmed that the safety of hydrogen fueling stations was strengthened. Conclusion: The risk assessment that precedes the stage of installing hydrogen fueling stations is appropriate because significant results have been derived from the 'acceptable risk' assessment. However, the operator needs to evaluate the risks that may occur at the operating stage, that is, the 'allowable risks' and prepare countermeasures. Therefore, it is proposed to add management risk assessment items to build and operate safer hydrogen fueling stations.

A Study on Integrated Safety Management System of LNG Storage/Transport Facilities (LNG 저장/수송 시설의 통합 안전 관리 시스템 개발에 관한 연구)

  • Lee, Sang-Ho;Lim, Young-Sub;Han, Chong-Hun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.1-6
    • /
    • 2008
  • The safety management of the LNG industry which shows huge growth recently, become an essential element. So the necessity of development for the pre-existing LNG storage/transport facility has been shown up and the improvement of information technology (IT) of these days make it possible to synthesize several models for integrated LNG facilitiy safety management system. This system will contains risk analysis/assessment technology, explosion, leakage and diffusion model construction technology, real-time monitoring and fault diagnosis technology, and reliability progression technology of process information through data reconciliation. The final integrated safety management system will contribute the increase of LNG industry's safety and exportation of technique.

  • PDF

A Proposal on the Navigation Supporting System for improving the Marine Traffic Safety

  • Lee, Hyong-Ki;Jung, Chang-Hyun;Kong, Gil-Young;Park, Young-Soo
    • Journal of Navigation and Port Research
    • /
    • v.33 no.7
    • /
    • pp.463-467
    • /
    • 2009
  • In near future, more congested and dangerous marine traffic environment due to the rapid marine traffics increase and ship handling difficulty by enlargement of ship size is predicted. In this paper, an navigation supporting system proposal made to enhance the safe navigation by providing the collision avoidance informations to the navigator via marine traffic environment assessment. Proposed navigation supporting system displays results of marine traffic environment assessment, degree of the dangers and gives reason of danger which is enhance situational awareness of navigator. For this purpose, results of marine traffic environment assessment which is obtained via real time assessment sent to the designated server and through the connection with navigation supporting system navigator being enable to see all those informations on the computer screen Navigator would utilize those information to make a decision in the difficult waterways and thus safe navigation could be enhanced.