• 제목/요약/키워드: Real-Time Prediction

검색결과 1,218건 처리시간 0.024초

항공기 임무신뢰도 예측 방안 연구 (A Study on the Aircraft Mission Reliability Prediction)

  • 이준우;주현준;이민구
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제6권2호
    • /
    • pp.115-134
    • /
    • 2006
  • This paper deals with OO aircraft mission reliability prediction. To demonstrate user-required mission reliability, it is calculated with use general formulae which are used in reliability engineering. The mission reliability of OO aircraft is calculated in considering conversion factor (CF) on the each subsystems' MTBF. The prediction results are explained only the state at present time. Because these data are not real data in operational environments. Therefore, in the case of OO aircraft, it has to be needed collecting the real and renewal data which are operational and empirical. After that, continuing the data upgrading, it is easily closed to the more exact reliability value.

  • PDF

정보기준과 효율적 자료길이를 활용한 시계열자료 운동패턴 예측 연구 (A Study on Prediction the Movement Pattern of Time Series Data using Information Criterion and Effective Data Length)

  • 전진호;김민수
    • 한국인터넷방송통신학회논문지
    • /
    • 제13권1호
    • /
    • pp.101-107
    • /
    • 2013
  • 현실세계에서는 광범위한 업무영역에서 대용량의 시계열자료들이 실시간으로 발생되고 있다. 하지만 동적인 특징으로 표현되는 시계열자료들의 이해와 설명을 위한 최적의 모형을 결정하는 일은 쉽지가 않다. 이러한 시계열자료들의 특징을 잘 설명할 수 있는 모형을 추정하기 위하여 본 연구에서는 시계열데이터의 모형추정에 적합한 은닉마아코프모델을 통해 시계열자료의 장, 단기 예측모형을 추정하였고 이를 통해 미래의 운동패턴예측을 확인하였다. 실제 주식시장의 여러 자료들을 통해 최적의 모형추정을 위한 정보기준과 가장 효율적인 자료길이를 통해 모형의 상태수를 정확하게 추정하는지를 확인하였다. 실험결과 유효한 상태의 수 추정과 단기의 예측이 장기예측보다 유사운동패턴 예측률이 더욱 유사함을 확인하였다.

계층적 능동형태 모델을 이용한 비정형 객체의 움직임 예측형 실시간 추적 (Hierarchical Active Shape Model-based Motion Estimation for Real-time Tracking of Non-rigid Object)

  • 강진영;이성원;신정호;백준기
    • 대한전자공학회논문지SP
    • /
    • 제41권5호
    • /
    • pp.1-11
    • /
    • 2004
  • 본 논문에서는 비정형 객체를 능동형태 모델을 사용하여 실시간으로 추적하기 위한 방법을 제시하였다. 객체를 추적 할 때, 가려진 부분의 윤곽을 추정해 낼 수 있는 능동형태 모델을 사용하였으며, 비디오의 각 프레임에서 처리과정의 시간을 줄이기 위해서 영상을 계층적으로 분리하여 실시간 처리를 가능하게 하였다 또한 다음 입력영상의 초기 윤곽을 효율적으로 찾기 위해서 칼만필터(Kalman filter)를 사용하여 특징점을 예측하였고, 블록 정합(block matching) 기법을 추가하여 예측 안정성을 향상시켰다. 비 계층적 방법, 비 예측 방법 등과 비교 실험을 통해서 제안된 계층적, 예측형 방식이 수렴속도 증가와 모델링의 정확도에서 모두 개선된 효과를 얻을 수 있음을 확인하였다.

제주 실시간 풍력발전 출력 예측시스템 개발을 위한 개념설계 연구 (A study on the Conceptual Design for the Real-time wind Power Prediction System in Jeju)

  • 이영미;유명숙;최홍석;김용준;서영준
    • 전기학회논문지
    • /
    • 제59권12호
    • /
    • pp.2202-2211
    • /
    • 2010
  • The wind power prediction system is composed of a meteorological forecasting module, calculation module of wind power output and HMI(Human Machine Interface) visualization system. The final information from this system is a short-term (6hr ahead) and mid-term (48hr ahead) wind power prediction value. The meteorological forecasting module for wind speed and direction forecasting is a combination of physical and statistical model. In this system, the WRF(Weather Research and Forecasting) model, which is a three-dimensional numerical weather model, is used as the physical model and the GFS(Global Forecasting System) models is used for initial condition forecasting. The 100m resolution terrain data is used to improve the accuracy of this system. In addition, optimization of the physical model carried out using historic weather data in Jeju. The mid-term prediction value from the physical model is used in the statistical method for a short-term prediction. The final power prediction is calculated using an optimal adjustment between the currently observed data and data predicted from the power curve model. The final wind power prediction value is provided to customs using a HMI visualization system. The aim of this study is to further improve the accuracy of this prediction system and develop a practical system for power system operation and the energy market in the Smart-Grid.

수문모형과 기계학습을 연계한 실시간 하천홍수 예측 (Linkage of Hydrological Model and Machine Learning for Real-time Prediction of River Flood)

  • 이재영;김현일;한건연
    • 대한토목학회논문집
    • /
    • 제40권3호
    • /
    • pp.303-314
    • /
    • 2020
  • 수자원분야에서 이용되는 강우에 따른 유역의 수문학적 시스템, 도시지역 및 하천에 대한 수리학적 시스템은 비선형성이 강하고 많은 변수들을 포함하고 있다. 이러한 특성을 가진 시계열 자료에서 기계학습을 통한 예측은 예측시점 이전의 자료 특성을 반영하지 못하는 등 기본적인 신경망으로는 부족한 상황이 발생하기도 한다. 본 연구에서 적용할 강우-유출량과 같이 비선형성이 강하고 시간종속성이 높은 복잡한 시계열 자료를 예측하기 위해 신경망의 학습능력을 극대화한 순환형 동적 신경망(Recurrent Dynamic Neural Network)의 한 종류인 동시에, 시간 지연 신경망(Time-Delay Neural Network)의 특성을 가진 비선형 자기회귀(NARX, Nonlinear Autoregressive Exogenous Model) 인공신경망을 사용하였다. 이를 태화강 지방하천 구간에 적용하여 NARX 인공신경망의 시간 지연 매개변수를 10분에서 120분까지 조정하며 모의한 결과에 대해 여러 통계지표를 이용해 정량적으로 평가하였다. 그 결과 지연시간이 증가할수록 효율계수(NSE)가 0.530에서 0.988으로 증가하고, 평균제곱근편차(RMSE)가 379.9 ㎥/s에서 16.1 ㎥/s로 감소하는 등 정교한 예측이 가능함을 확인하였다.

Creep Life Prediction for Udimet 720 Material Using the Initial Strain Method (ISM)

  • Kong, Yu-Sik;Yoon, Han-Ki;Oh, Sae-Kyoo
    • Journal of Mechanical Science and Technology
    • /
    • 제17권4호
    • /
    • pp.469-476
    • /
    • 2003
  • Despite of considerable research results or uniaxial tension creep available for superalloys, few studies have been made on high temperature creep using the Initial Stram Method (ISM) In this paper, the real-time prediction of high temperature creep strength and creep lift for the nickel-based superalloy Udimet 720 (high-temperature and high-pressure gas turbine engine materials) was performed on round-bar type specimens under pure static load at the temperatures of 538$^{\circ}C$. 649$^{\circ}C$, and 704$^{\circ}C$. The predictive equation derived from the ISM in creep tests showed better reliability than those from LMP (Larson-Miller Parameter) and LMP-lSM (Larson Miller Parameter-Initial Strain Method) specially for long time creep prediction (10$^3$∼10$\^$5/h).

칼만필터를 이용한 도시고속도로 교통량예측 및 실시간O-D 추정 (Prediction of Volumes and Estimation of Real-time Origin-Destination Parameters on Urban Freeways via The Kalman Filtering Approach)

  • 강정규
    • 대한교통학회지
    • /
    • 제14권3호
    • /
    • pp.7-26
    • /
    • 1996
  • The estimation of real-time Origin-Destination(O-D) parameters, which gives travel demand between combinations of origin and destination points on a urban freeway network, from on-line surveillance traffic data is essential in developing an efficient ATMS strategy. On this need a real-time O-D parameter estimation model is formulated as a parameter adaptive filtering model based on the extended Kalman Filter. A Monte Carlo test have shown that the estimation of time-varying O-D parameter is possible using only traffic counts. Tests with field data produced the interesting finding that off-ramp volume predictions generated using a constant freeway O-D matrix was replaced by real-time estimates generated using the parameter adaptive filter.

  • PDF

실시간 감시 시스템을 위한 사전 무학습 능동 특징점 모델 기반 객체 추적 (Non-Prior Training Active Feature Model-Based Object Tracking for Real-Time Surveillance Systems)

  • 김상진;신정호;이성원;백준기
    • 대한전자공학회논문지SP
    • /
    • 제41권5호
    • /
    • pp.23-34
    • /
    • 2004
  • 본 논문에서는 사전학습이 필요 없는 능동 특징점 모델(non-prior training active feature model; NPT AFM) 기반에서 광류(optical flow)를 이용한 객체추적 기술을 제안한다. 제안한 알고리듬은 비정형 객체에 대한 분석[1]에 초점을 두고 있으며, 실시간에서 NPT-AFM을 사용한 강건한 추적을 가능하게 한다. NPT-AFM 알고리듬은 관심 객체의 위치를 파악하는 과정 (localization)과 이전 프레임 정보와 현재 프레임 정보를 이용하여, 객체의 위치를 예측(prediction), 보정(correction)하는 과정으로 나눌 수 있다 위치 파악 과정에서는 움직임 분할(motion segmentation)을 수행한 후 개선된 Shi-Tomasi의 특징점 추적 알고리듬[2]을 사용 하였다. 예측 및 보정 과정에서는 광류 정보를 사용하여 특징점을 추적하고[3] 만약, 특징점이 적절히 추적 되지 않거나 추적에 실패하면 특징점들의 시간(temporal), 공간(spatial)적 정보를 이용하여 예측, 보정하게 된다. 객체의 형태 (shape)대신 특징점을 사용하였으며, 객체를 추적하는 과정에서 특징점들은 능동 특징점 모델(active feature model; AFM)을 위한 학습 집합(training sets)의 요소로 갱신된다. 실험결과, 제안한 NPT-AF% 기반 추적 알고리듬은 실시간에서 비정형 객체를 추적하는데 강건함을 보석준다.

한반도·동아시아 지역의 실시간 가뭄 감시 및 전망 시스템 개발 (Development of Real-Time Drought Monitoring and Prediction System on Korea & East Asia Region)

  • 배덕효;손경환;안중배;홍자영;김광섭;정준석;정의석;김종군
    • 대기
    • /
    • 제22권2호
    • /
    • pp.267-277
    • /
    • 2012
  • The objectives of this study are to develop a real-time drought monitoring and prediction system on the East Asia domain and to evaluate the performance of the system by using past historical drought records. The system is mainly composed of two parts: drought monitoring for providing current drought indices with meteorological and hydrological conditions; drought outlooks for suggesting future drought indices and future hydrometeorological conditions. Both parts represent the drought conditions on the East Asia domain (latitude $21.15{\sim}50.15^{\circ}$, longitude $104.40{\sim}149.65^{\circ}$), Korea domain (latitude $30.40{\sim}43.15^{\circ}$, longitude $118.65{\sim}135.65^{\circ}$) and South Korea domain (latitude $30.40{\sim}43.15^{\circ}$, longitude $118.65{\sim}135.65^{\circ}$), respectively. The observed meteorological data from ASOS (Automated Surface Observing System) and AWS (Automatic Weather System) of KMA (Korean Meteorological Administration) and model-driven hydrological data from LSM (Land Surface model) are used for the real-time drought monitoring, while the monthly and seasonal weather forecast information from UM (Unified Model) of KMA are utilized for drought outlooks. For the evaluation of the system, past historical drought records occurred in Korea are surveyed and are compared with the application results of the system. The results demonstrated that the selected drought indices such as KMA drought index, SPI (3), SPI (6), PDSI, SRI and SSI are reasonable, especially, the performance of SRI and SSI provides higher accuracy that the others.

표면 근전도 신호를 이용한 실시간 상지부 동작 예측을 통한 인간-기계 상호작용 (Human-Machine Interaction based on a Real-time Upper Limb Motion Prediction using Surface Electromyography)

  • 권순철;김정
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.418-421
    • /
    • 2009
  • 본 논문은 표면 근전도 신호(sEMG)를 이용해 상지부의 동작을 실시간으로 예측하고 이를 기반으로 한 인간-기계 상호작용(Human-machine interaction)에 관한 것이다. 사용자의 상지부에 위치한 5 곳의 근육에서 수집하는 근전도 신호와 인공신경회로망(arfiticial neural network) 알고리즘을 이용하여 상지부 동작을 실시간으로 예측하였고, 기계팔(manipulator)이 예측된 동작을 좇아 움직이도록 제어되었다. 이때, 사용자가 기계팔의 끝단(end-effector)과 접촉해 있는 상태에서 상지부 동작은 2 차원 평면 위에서 이루어지도록 제한된다. 본 논문이 제안하는 동작 예측 방법과 인체 각도계(goniometer)를 이용한 경우의 상호 작용 실험을 통해, 동작 예측을 통한 인간-기계 상호 작용의 성능을 알아보았다. 실험 결과로부터, 제안된 실시간 동작 예측 방법을 이용하여 사용자와 기계의 상호 작용 시스템을 구현할 수 있음을 알 수 있다.

  • PDF