• 제목/요약/키워드: Real-Time Polymerase Chain Reaction

검색결과 795건 처리시간 0.029초

콜라겐 유도 관절염 동물 모델에 대한 동충하초 복합추출물의 치료 효과 (Healing Effect of Cordyceps Militaris Extract Complex on Collagen II-Induced Arthritis Rats)

  • 오승준;이은정
    • 한방재활의학과학회지
    • /
    • 제32권3호
    • /
    • pp.1-11
    • /
    • 2022
  • Objectives This study was designed to evaluate the healing effect of Cordyceps Militaris (CM) on collagen II-induced arthritis rats. Methods Sprague-Dawley rats were randomly divided into 6 groups (normal, control, positive control, CM with low/medium/high dosage each). Type II collagen mixed with complete Freund's adjuvant (with 1:1 v/v) was injected subcutaneously, and the mixture was injected in a same manner one week after the first injection to boost arthritis. Arthritis index, paw thickness and von Frey test were conducted to observe physical changes. hematoxylin and eosin (H&E) staining was performed to observe knee cartilage. The levels of messenger RNA (mRNA) expressions of interleukin (IL)-1𝛽, IL-6, tumor necrosis factor-alpha (TNF-𝛼) in spleen were assessed by real-time polymerase chain reaction. Results Rheumatoid arthritis is an autoimmune disease that occurs on multiple joints and can lead to temporary shape change of bones or organ failure in severe cases. Here, we aimed to determine the effect of CM extract on rheumatoid arthritis by measuring paw thickness, arthritis index, conducting von Frey test and H&E staining, and evaluating the level of IL-1𝛽, IL-6, TNF-𝛼. As a result, paw thickness, arthritis index significantly decreased in low concentration group, hind leg became less sensitive in all expermental groups. Also, histological analysis showed that the damage of knee cartilage was prevented in all experimental groups. The level of mRNA of IL-1𝛽, IL-6, and TNF-𝛼 in spleen was analyzed to decide the effectiveness of CM extract. IL-1𝛽 did not show significant change, but IL-6 and TNF-𝛼 showed significant decrease in at least one of the experimental groups. Conclusions CM showed protective effect on knee tissue destruction and improved the physical conditions of the leg involving arthritis. Also, it showed that CM has anti-inflammatory effect on specific cytokines inducing rheumatoid arthritis. In conclusion, this study demonstrated that the therapeutic potential of CM for the treatment rheumatoid arthritis, and set the foundation for the further studies.

Antiviral effects of Bovine antimicrobial peptide against TGEV in vivo and in vitro

  • Liang, Xiuli;Zhang, Xiaojun;Lian, Kaiqi;Tian, Xiuhua;Zhang, Mingliang;Wang, Shiqiong;Chen, Cheng;Nie, Cunxi;Pan, Yun;Han, Fangfang;Wei, Zhanyong;Zhang, Wenju
    • Journal of Veterinary Science
    • /
    • 제21권5호
    • /
    • pp.80.1-80.13
    • /
    • 2020
  • Background: In suckling piglets, transmissible gastroenteritis virus (TGEV) causes lethal diarrhea accompanied by high infection and mortality rates, leading to considerable economic losses. This study explored methods of preventing or inhibiting their production. Bovine antimicrobial peptide-13 (APB-13) has antibacterial, antiviral, and immune functions. Objectives: This study analyzed the efficacy of APB-13 against TGEV through in vivo and in vitro experiments. Methods: The effects of APB-13 toxicity and virus inhibition rate on swine testicular (ST) cells were detected using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT). The impact of APB-13 on virus replication was examined through the 50% tissue culture infective dose (TCID50). The mRNA and protein levels were investigated by real-time quantitative polymerase chain reaction and western blot (WB). Tissue sections were used to detect intestinal morphological development. Results: The safe and effective concentration range of APB-13 on ST cells ranged from 0 to 62.5 ㎍/mL, and the highest viral inhibitory rate of APB-13 was 74.1%. The log10TCID50 of 62.5 ㎍/mL APB-13 was 3.63 lower than that of the virus control. The mRNA and protein expression at 62.5 ㎍/mL APB-13 was significantly lower than that of the virus control at 24 hpi. Piglets in the APB-13 group showed significantly lower viral shedding than that in the virus control group, and the pathological tissue sections of the jejunum morphology revealed significant differences between the groups. Conclusions: APB-13 exhibited good antiviral effects on TGEV in vivo and in vitro.

Growth performance, carcass traits, muscle fiber characteristics and skeletal muscle mRNA abundance in hair lambs supplemented with ferulic acid

  • Pena-Torres, Edgar Fernando;Castillo-Salas, Candelario;Jimenez-Estrada, Ismael;Muhlia-Almazan, Adriana;Pena-Ramos, Etna Aida;Pinelli-Saavedra, Araceli;Avendano-Reyes, Leonel;Hinojosa-Rodriguez, Cindy;Valenzuela-Melendres, Martin;Macias-Cruz, Ulises;Gonzalez-Rios, Humberto
    • Journal of Animal Science and Technology
    • /
    • 제64권1호
    • /
    • pp.52-69
    • /
    • 2022
  • Ferulic acid (FA) is a phytochemical with various bioactive properties. It has recently been proposed that due to its phytogenic action it can be used as an alternative growth promoter additive to synthetic compounds. The objective of the present study was to evaluate the growth performance, carcass traits, fiber characterization and skeletal muscle gene expression on hair-lambs supplemented with two doses of FA. Thirty-two male lambs (n = 8 per treatment) were individually housed during a 32 d feeding trial to evaluate the effect of FA (300 and 600 mg d-1) or zilpaterol hydrochloride (ZH; 6 mg d-1) on growth performance, and then slaughtered to evaluate the effects on carcass traits, and muscle fibers morphometry from Longissimus thoracis (LT) and mRNA abundance of β2-adrenergic receptor (β2-AR), MHC-I, MHC-IIX and IGF-I genes. FA increased final weight and average daily gain with respect to non-supplemented animals (p < 0.05). The ZH supplementation increased LT muscle area, with respect to FA doses and control (p < 0.05). Cross-sectional area (CSA) of oxidative fibers was larger with FA doses and ZH (p < 0.05). Feeding ZH increased mRNA abundance for β2-AR compared to FA and control (p < 0.05), and expression of MHC-I was affected by FA doses and ZH (p < 0.05). Overall, FA supplementation of male hair lambs enhanced productive variables due to skeletal muscle hypertrophy caused by MHC-I up-regulation. Results suggest that FA has the potential like a growth promoter in lambs.

고콜레스테롤 식이 섭취 쥐에서 quercetin의 간 AMPK 및 microRNA-21 조절을 통한 지질대사 개선 효과 (Effects of quercetin on the improvement of lipid metabolism through regulating hepatic AMPK and microRNA-21 in high cholesterol diet-fed mice)

  • 이막순;김양하
    • Journal of Nutrition and Health
    • /
    • 제55권1호
    • /
    • pp.36-46
    • /
    • 2022
  • Quercetin의 지질대사 개선 효과에 대한 작용기전을 확인하기 위해 C57BL/6J mouse를 사용하여 실험을 수행하였다. 고콜레스테롤혈증을 유도하기 위해 6주간 1% 콜레스테롤과 0.5% cholic acid를 함유하는 고콜레스테롤 식이를 급여하였으며, quercetin은 0.05%와 0.1%의 수준으로 고콜레스테롤 식이에 추가하여 같은 기간 동안 제공하였다. Quercetin은 혈청과 간의 중성지방 및 콜레스테롤 수준을 용량 의존적으로 감소하는 것으로 나타났다. 고콜레스테롤 식이를 섭취한 쥐의 간에서 지방 합성을 촉진하는 SREBP-1c, ACC1 및 FAS 유전자 발현이 quercetin 섭취에 의해 억제되는 것을 확인하였다. Quercetin은 간세포 내에서 에너지 대사를 조절하는 AMPK 활성을 증가시켰다. 이에 반해 암세포 증식을 촉진하고 지방간에서 높게 발현되는 miR-21 발현은 quercetin 섭취에 의해 감소되었다. 본 연구의 결과는 quercetin이 고콜레스테롤 식이 섭취 쥐에서 혈청과 간의 지질 수준을 낮추는 지질대사 개선 효과가 있으며, 이러한 효과의 일부는 간 내 지방합성 유전자 (SREBP-1c, ACC1 및 FAS) 발현, AMPK 활성 및 miR-21 조절을 통해 매개된다는 것을 시사한다.

Epigallocatechin-3-gallate suppresses hemin-aggravated colon carcinogenesis through Nrf2-inhibited mitochondrial reactive oxygen species accumulation

  • Seok, Ju Hyung;Kim, Dae Hyun;Kim, Hye Jih;Jo, Hang Hyo;Kim, Eun Young;Jeong, Jae-Hwang;Park, Young Seok;Lee, Sang Hun;Kim, Dae Joong;Nam, Sang Yoon;Lee, Beom Jun;Lee, Hyun Jik
    • Journal of Veterinary Science
    • /
    • 제23권5호
    • /
    • pp.74.1-74.16
    • /
    • 2022
  • Background: Previous studies have presented evidence to support the significant association between red meat intake and colon cancer, suggesting that heme iron plays a key role in colon carcinogenesis. Epigallocatechin-3-gallate (EGCG), the major constituent of green tea, exhibits anti-oxidative and anti-cancer effects. However, the effect of EGCG on red meat-associated colon carcinogenesis is not well understood. Objectives: We aimed to investigate the regulatory effects of hemin and EGCG on colon carcinogenesis and the underlying mechanism of action. Methods: Hemin and EGCG were treated in Caco2 cells to perform the water-soluble tetrazolium salt-1 assay, lactate dehydrogenase release assay, reactive oxygen species (ROS) detection assay, real-time quantitative polymerase chain reaction and western blot. We investigated the regulatory effects of hemin and EGCG on an azoxymethane (AOM) and dextran sodium sulfate (DSS)-induced colon carcinogenesis mouse model. Results: In Caco2 cells, hemin increased cell proliferation and the expression of cell cycle regulatory proteins, and ROS levels. EGCG suppressed hemin-induced cell proliferation and cell cycle regulatory protein expression as well as mitochondrial ROS accumulation. Hemin increased nuclear factor erythroid-2-related factor 2 (Nrf2) expression, but decreased Keap1 expression. EGCG enhanced hemin-induced Nrf2 and antioxidant gene expression. Nrf2 inhibitor reversed EGCG reduced cell proliferation and cell cycle regulatory protein expression. In AOM/DSS mice, hemin treatment induced hyperplastic changes in colon tissues, inhibited by EGCG supplementation. EGCG reduced the hemin-induced numbers of total aberrant crypts and malondialdehyde concentration in the AOM/DSS model. Conclusions: We demonstrated that EGCG reduced hemin-induced proliferation and colon carcinogenesis through Nrf2-inhibited mitochondrial ROS accumulation.

Green perilla leaf extract ameliorates long-term oxidative stress induced by a high-fat diet in aging mice

  • Edward, Olivet Chiamaka;Thomas, Shalom Sara;Cha, Kyung-Ok;Jung, Hyun-Ah;Han, Anna;Cha, Youn-Soo
    • Nutrition Research and Practice
    • /
    • 제16권5호
    • /
    • pp.549-564
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Oxidative stress is caused by an imbalance between harmful free radicals and antioxidants. Long-term oxidative stress can lead to an "exhausted" status of antioxidant defense system triggering development of metabolic syndrome and chronic inflammation. Green perilla (Perilla frutescens) is commonly used in Asian cuisines and traditional medicine in southeast Asia. Green perilla possesses numerous beneficial effects including anti-inflammatory and antioxidant functions. To investigate the potentials of green perilla leaf extract (PE) on oxidative stress, we induced oxidative stress by high-fat diet (HFD) in aging mice. MATERIALS/METHODS: C57BL/6J male mice were fed HFD continuously for 53 weeks. Then, mice were divided into three groups for 12 weeks: a normal diet fed reference group (NDcon), high-fat diet fed group (HDcon), and high-fat diet PE treated group (HDPE, 400 mg/kg of body weight). Biochemical analyses of serum and liver tissues were performed to assess metabolic and inflammatory damage and oxidative status. Hepatic gene expression of oxidative stress and inflammation related enzymes were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: PE improved hepatopathology. PE also improved the lipid profiles and antioxidant enzymes, including hepatic glutathione peroxidase (GPx) and superoxide dismutase (SOD) and catalase (CAT) in serum and liver. Hepatic gene expressions of antioxidant and anti-inflammatory related enzymes, such as SOD-1, CAT, interleukin 4 (IL-4) and nuclear factor erythroid 2-related factor (Nrf2) were significantly enhanced by PE. PE also reduced the levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA) in the serum and liver; moreover, PE suppressed hepatic gene expression involved in pro-inflammatory response; Cyclooxygenase-2 (COX-2), nitric oxide synthase (NOS), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6). CONCLUSIONS: This research opens opportunities for further investigations of PE as a functional food and possible anti-aging agent due to its attenuative effects against oxidative stress, resulting from HFD and aging in the future.

Comprehensive analysis of miRNAs, lncRNAs and mRNAs profiles in backfat tissue between Daweizi and Yorkshire pigs

  • Chen Chen;Yitong Chang;Yuan Deng;Qingming Cui;Yingying Liu;Huali Li;Huibo Ren;Ji Zhu;Qi Liu;Yinglin Peng
    • Animal Bioscience
    • /
    • 제36권3호
    • /
    • pp.404-416
    • /
    • 2023
  • Objective: Daweizi (DWZ) is a famous indigenous pig breed in China and characterized by tender meat and high fat percentage. However, the expression profiles and functions of transcripts in DWZ pigs is still in infancy. The object of this study was to depict the transcript profiles in DWZ pigs and screen the potential pathway influence adipogenesis and fat deposition, Methods: Histological analysis of backfat tissue was firstly performed between DWZ and lean-type Yorkshire pigs, and then RNA sequencing technology was utilized to explore miRNAs, lncRNAs and mRNAs profiles in backfat tissue. 18 differentially expressed (DE) transcripts were randomly selected for quantitative real-time polymerase chain reaction (QPCR) to validate the reliability of the sequencing results. Finally, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis were conducted to investigate the potential pathways influence adipocyte differentiation, adipogenesis and lipid metabolism, and a schematic model was further proposed. Results: A total of 1,625 differentially expressed transcripts were identified in DWZ pigs, including 27 upregulated and 45 downregulated miRNAs, 64 upregulated and 119 down-regulated lncRNA, 814 upregulated and 556 downregulated mRNAs. QPCR analysis exhibited strong consistency with the sequencing data. GO and KEGG analysis elucidated that the differentially expressed transcripts were mainly associated with cell growth and death, signal transduction, peroxisome proliferator-activated receptors (PPAR), AMP-activated protein kinase (AMPK), PI3K-Akt, adipocytokine and foxo signaling pathways, all of which are strongly involved in cell development, lipid metabolism and adipogenesis. Further analysis indicated that the BGIR9823_87926/miR-194a-5p/AQP7 network may be effective in the process of adipocyte differentiation or adipogenesis. Conclusion: Our study provides comprehensive insights into the regulatory network of backfat deposition and lipid metabolism in pigs from the point of view of miRNAs, lncRNAs and mRNAs.

C2C12 골격근 세포에서 갈근황금황련탕의 당 대사 및 에너지 조절 효과 (The Effects of Galgunhwanggumhwangryun-tang on Glucose and Energy Metabolism in C2C12 Myotubes)

  • 오지홍;한송이;임수경;김호준
    • 한방비만학회지
    • /
    • 제22권2호
    • /
    • pp.93-101
    • /
    • 2022
  • Objectives: This study aimed to observe the anti-diabetic effect and underlying mechanisms of Galgunhwanggumhwangryun-tang (GHH; Gegen-Qinlian-decoction) in the C2C12 myotubes. Methods: GHH (1.0 mg/ml) or metformin (0.75 mM) or insulin (100 nM) were treated in C2C12 myotubes after 4 days differentiation. The glucose uptake was assessed by 2-[N-(7-160 nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose uptake by C2C12 cells. The expression of adenosine monophosphate-activated protein kinase (AMPK) and phosphorylation AMPK (pAMPK) were measured by western blot. We also evaluated gene expression of glucose transporter type 4 (Slc2a4, formerly known as GLUT4), glucokinase (Gk), carnitine palmitoyltransferase IA (Cpt1a), nuclear respiratory factors 1 (Nrf1), mitochondrial transcription factor A (Tfam), and peroxisome proliferator-activated receptor γ coactivator 1α (Ppargc1a) by quantitative real-time polymerase chain reaction. Results: GHH promoted glucose uptake in C2C12 myotubes. The expression of AMPK protein, which plays an essential role in glucose metabolism, was increased by treatment with GHH. GHH treatment tended to increase gene expression of Slc2a4, Gk, and Nrf1 but was not statistically significant. However, GHH significantly improved Tfam and Ppargc1a gene expression in C2C12 myotubes. Conclusions: In summary, GHH treatment promoted glucose uptake in C2C12 myotubes. We suggest that these effects are associated with increased gene expression involved in mitochondrial biosynthesis and oxidative phosphorylation, such as Tfam and Ppargc1a, and increased expression of AMPK protein.

탈구치 저장 매체로서 치주인대 세포에 미치는 Polydeoxyribonucleotide의 효과에 대한 연구 (Effect of Polydeoxyribonucleotide on Human Periodontal Ligament Cells as a Storage Medium for Avulsed Tooth)

  • 노상태;채용권;이고은;김미선;남옥형;이효설;최성철
    • 대한소아치과학회지
    • /
    • 제50권3호
    • /
    • pp.347-359
    • /
    • 2023
  • 본 연구는 탈구된 치아의 저장 매체로서 polydeoxyribonucleotide (PDRN)의 적합성을 평가하고자 하였다. HBSS와 10, 25, 50, 100 ㎍/mL 농도의 PDRN 용액과 수돗물에 저장된 인간 치주인대 세포의 생존율을 측정하기 위해 Cell Counting Kit-8 assay와 Live/Dead assay를 시행하였다. 또한, PDRN의 항염증 효과를 평가하기 위한 NO 검출 및 qRT-PCR 실험을 진행하였다. 100 ㎍/mL 농도의 PDRN 용액에 저장된 치주인대 세포의 생존율이 다른 용액보다 유의하게 높았다(p < 0.01). 또한, 100 ㎍/mL 농도의 PDRN 용액은 유의하게 NO의 생산을 줄였다(p < 0.0001). 그리고, HBSS 용액에 비하여 50 및 100 ㎍/mL 농도의 PDRN 용액에서 유의하게 tumor necrosis factor α, interleukin (IL)-4, IL-6, 그리고 IL-10의 발현이 낮았다(p < 0.01). 이 연구를 통해 PDRN은 치주인대 세포에 세포 보존 및 항염증 효과를 가진 것으로 밝혀졌다. 이 연구는 효과적인 탈구치 저장매체의 개발을 위한 향후 추가적인 실험의 기반이 될 수 있을 것이라 생각한다.

Genome-wide identification, organization, and expression profiles of the chicken fibroblast growth factor genes in public databases and Vietnamese indigenous Ri chickens against highly pathogenic avian influenza H5N1 virus infection

  • Anh Duc Truong;Ha Thi Thanh Tran;Nhu Thi Chu;Huyen Thi Nguyen;Thi Hao Vu;Yeojin Hong;Ki-Duk Song;Hoang Vu Dang;Yeong Ho Hong
    • Animal Bioscience
    • /
    • 제36권4호
    • /
    • pp.570-583
    • /
    • 2023
  • Objective: Fibroblast growth factors (FGFs) play critical roles in embryo development, and immune responses to infectious diseases. In this study, to investigate the roles of FGFs, we performed genome-wide identification, expression, and functional analyses of FGF family members in chickens. Methods: Chicken FGFs genes were identified and analyzed by using bioinformatics approach. Expression profiles and Hierarchical cluster analysis of the FGFs genes in different chicken tissues were obtained from the genome-wide RNA-seq. Results: A total of 20 FGF genes were identified in the chicken genome, which were classified into seven distinct groups (A-F) in the phylogenetic tree. Gene structure analysis revealed that members of the same clade had the same or similar exon-intron structure. Chromosome mapping suggested that FGF genes were widely dispersed across the chicken genome and were located on chromosomes 1, 4-6, 9-10, 13, 15, 28, and Z. In addition, the interactions among FGF proteins and between FGFs and mitogen-activated protein kinase (MAPK) proteins are limited, indicating that the remaining functions of FGF proteins should be further investigated in chickens. Kyoto encyclopedia of genes and genomes pathway analysis showed that FGF gene interacts with MAPK genes and are involved in stimulating signaling pathway and regulating immune responses. Furthermore, this study identified 15 differentially expressed genes (DEG) in 21 different growth stages during early chicken embryo development. RNA-sequencing data identified the DEG of FGFs on 1- and 3-days post infection in two indigenous Ri chicken lines infected with the highly pathogenic avian influenza virus H5N1 (HPAIV). Finally, all the genes examined through quantitative real-time polymerase chain reaction and RNA-Seq analyses showed similar responses to HPAIV infection in indigenous Ri chicken lines (R2 = 0.92-0.95, p<0.01). Conclusion: This study provides significant insights into the potential functions of FGFs in chickens, including the regulation of MAPK signaling pathways and the immune response of chickens to HPAIV infections.