• 제목/요약/키워드: Real-Time Polymerase Chain Reaction

검색결과 795건 처리시간 0.028초

Maternal nutrition altered embryonic MYOD1, MYF5, and MYF6 gene expression in genetically fat and lean lines of chickens

  • Li, Feng;Yang, Chunxu;Xie, Yingjie;Gao, Xiang;Zhang, Yuanyuan;Ning, Hangyi;Liu, Guangtao;Chen, Zhihui;Shan, Anshan
    • Animal Bioscience
    • /
    • 제35권8호
    • /
    • pp.1223-1234
    • /
    • 2022
  • Objective: The objectives of this study were to evaluate the effects of daily feed intake during the laying period on embryonic myogenic differentiation 1 (MYOD1), myogenic factor 5 (MYF5), and myogenic factor 6 (MYF6) gene expression in genetically fat and lean lines of chickens. Methods: An experiment in a 2×2 factorial design was conducted with two dietary intake levels (100% and 75% of nutrition recommendation) and two broiler chicken lines (fat and lean). Two lines of hens (n = 384 for each line) at 23th week of age were randomly divided into 4 treatments with 12 replicates of 16 birds. The experiment started at 27th week of age (5% egg rate) and ended at 54th week of age. Hatched eggs from the medium laying period were collected. Real time polymerase chain reaction analysis was used to analyse the MYOD1, MYF5, and MYF6 mRNA levels of E7, E9, E11, E13, and E15 body tissues and E17, E19, and E21 chest and thigh muscle samples. Results: The results indicated that there were significant effects of line, dietary intake, and interactions between them on MYOD1, MYF5, and MYF6 gene mRNA expression levels in embryonic tissues. Low daily feed intake did not change the expression trend of MYOD1 mRNA in either line, but changed the peak values, especially in lean line. Low daily feed intake altered the trend in MYF5 mRNA expression level in both lines and apparently delayed its onset. There was no apparent effect of low daily feed intake on the trends of MYF6 mRNA expression levels in either line, but it significantly changed the values on many embryonic days. Conclusion: Maternal nutrient restriction affects myogenesis and is manifested in the expression of embryonic MYOD1, MYF5, and MYF6 genes. Long term selection for fat deposition in broiler chickens changes the pattern and intensity of myogenesis.

Dexmedetomidine and LPS co-treatment attenuates inflammatory response on WISH cells via inhibition of p38/NF-kB signaling pathway

  • Kim, Tae-Sung;Yoon, Ji-Young;Kim, Cheul-Hong;Choi, Eun-Ji;Kim, Yeon Ha;Kim, Eun-Jung
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • 제22권4호
    • /
    • pp.277-287
    • /
    • 2022
  • Background: Inflammatory dental diseases that occur during pregnancy can cause preterm labor and/or intrauterine growth restriction. Therefore, proactive treatment of dental diseases is necessary during pregnancy. Dexmedetomidine (DEX) is a widely used sedative in the dental field, but research on the effect of DEX on pregnancy is currently insufficient. In this study, we investigated the effects of co-treatment with DEX and lipopolysaccharide (LPS) on inflammatory responses in human amnion-derived WISH cells. Methods: Human amnion-derived WISH cells were treated with 0.001, 0.01, 0.1, and 1 ㎍/mL DEX with 1 ㎍/mL LPS for 24 h. Cytotoxicity of WISH cells was evaluated by 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT) assay. The protein expression of cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), p38, and nuclear factor kappa B (NF-𝜅B) was examined by western blot analysis. The mRNA expression of pro-inflammatory cytokines such as interleukin (IL)-1𝛽 and tumor necrosis factor (TNF)-𝛼 was analyzed by real-time quantitative polymerase chain reaction. Results: Co-treatment with DEX and LPS showed no cytotoxicity in the WISH cells. The mRNA expression of IL-1𝛽 and TNF-𝛼 decreased after co-treatment with DEX and LPS. DEX and LPS co-treatment decreased the protein expression of COX-2, PGE2, phospho-p38, and phospho-NF-𝛋B in WISH cells. Conclusion: Co-treatment with DEX and LPS suppressed the expression of COX-2 and PGE2, as well as pro-inflammatory cytokines such as IL-1𝛽 and TNF-𝛼 in WISH cells. In addition, the anti-inflammatory effect of DEX and LPS co-treatment was mediated by the inhibition of p38/NF-𝜅B activation.

EID3 Promotes Glioma Cell Proliferation and Survival by Inactivating AMPKα1

  • Xiang, Yaoxian;Zhu, Lei;He, Zijian;Xu, Lei;Mao, Yuhang;Jiang, Junjian;Xu, Jianguang
    • Journal of Korean Neurosurgical Society
    • /
    • 제65권6호
    • /
    • pp.790-800
    • /
    • 2022
  • Objective : EID3 (EP300-interacting inhibitor of differentiation) was identified as a novel member of EID family and plays a pivotal role in colorectal cancer development. However, its role in glioma remained elusive. In current study, we identified EID3 as a novel oncogenic molecule in human glioma and is critical for glioma cell survival, proliferation and invasion. Methods : A total of five patients with glioma were recruited in present study and fresh glioma samples were removed from patients. Four weeks old male non-obese diabetic severe combined immune deficiency (NOD/SCID) mice were used as transplant recipient models. The subcutaneous tumor size was calculated and recorded every week with vernier caliper. EID3 and AMP-activated protein kinase α1 (AMPKα1) expression levels were confirmed by real-time polymerase chain reaction and Western blot assays. Colony formation assays were performed to evaluate cell proliferation. Methyl thiazolyl tetrazolium (MTT) assays were performed for cell viability assessment. Trypan blue staining approach was applied for cell death assessment. Cell Apoptosis DNA ELISA Detection Kit was used for apoptosis assessment. Results : EID3 was preferentially expressed in glioma tissues/cells, while undetectable in astrocytes, neuronal cells, or normal brain tissues. EID3 knocking down significantly hindered glioma cell proliferation and invasion, as well as induced reduction of cell viability, apoptosis and cell death. EID3 knocking down also greatly inhibited tumor growth in SCID mice. Knocking down of AMPKα1 could effectively rescue glioma cells from apoptosis and cell death caused by EID3 absence, indicating that AMPKα1 acted as a key downstream regulator of EID3 and mediated suppression effects caused by EID3 knocking down inhibition. These findings were confirmed in glioma cells generated patient-derived xenograft models. AMPKα1 protein levels were affected by MG132 treatment in glioma, which suggested EID3 might down regulate AMPKα1 through protein degradation. Conclusion : Collectively, our study demonstrated that EID3 promoted glioma cell proliferation and survival by inhibiting AMPKα1 expression. Targeting EID3 might represent a promising strategy for treating glioma.

Ginsenoside Rg1 alleviates Aβ deposition by inhibiting NADPH oxidase 2 activation in APP/PS1 mice

  • Zhang, Han;Su, Yong;Sun, Zhenghao;Chen, Ming;Han, Yuli;Li, Yan;Dong, Xianan;Ding, Shixin;Fang, Zhirui;Li, Weiping;Li, Weizu
    • Journal of Ginseng Research
    • /
    • 제45권6호
    • /
    • pp.665-675
    • /
    • 2021
  • Background: Ginsenoside Rg1 (Rg1), an active ingredient in ginseng, may be a potential agent for the treatment of Alzheimer's disease (AD). However, the protective effect of Rg1 on neurodegeneration in AD and its mechanism of action are still incompletely understood. Methods: Wild type (WT) and APP/PS1 AD mice, from 6 to 9 months old, were used in the experiment. The open field test (OFT) and Morris water maze (MWM) were used to detect behavioral changes. Neuronal damage was assessed by hematoxylin and eosin (H&E) and Nissl staining. Immunofluorescence, western blotting, and quantitative real-time polymerase chain reaction (q-PCR) were used to examine postsynaptic density 95 (PSD95) expression, amyloid beta (Aβ) deposition, Tau and phosphorylated Tau (p-Tau) expression, reactive oxygen species (ROS) production, and NAPDH oxidase 2 (NOX2) expression. Results: Rg1 treatment for 12 weeks significantly ameliorated cognitive impairments and neuronal damage and decreased the p-Tau level, amyloid precursor protein (APP) expression, and Aβ generation in APP/PS1 mice. Meanwhile, Rg1 treatment significantly decreased the ROS level and NOX2 expression in the hippocampus and cortex of APP/PS1 mice. Conclusions: Rg1 alleviates cognitive impairments, neuronal damage, and reduce Aβ deposition by inhibiting NOX2 activation in APP/PS1 mice.

Overexpression of cholinergic receptor nicotinic gamma subunit inhibits proliferation and differentiation of bovine preadipocytes

  • Jiawei, Du;Hui, Zhao;Guibing, Song;Yuan, Pang;Lei, Jiang;Linsen, Zan;Hongbao, Wang
    • Animal Bioscience
    • /
    • 제36권2호
    • /
    • pp.200-208
    • /
    • 2023
  • Objective: Muscle acetylcholine receptors have five alpha subunits (α, β, δ, ε, or γ), and cholinergic receptor nicotinic gamma subunit (CHRNG) is the γ subunit. It may also play an essential role in biological processes, including cell differentiation, growth, and survival, while the role of CHRNG has not been studied in the literature. Therefore, the purpose of this study is to clarify the effect of CHRNG on the proliferation and differentiation of bovine preadipocytes. Methods: We constructed a CHRNG overexpression adenovirus vector and successfully overexpressed it on bovine preadipocytes. The effects of CHRNG on bovine preadipocyte proliferation were detected by Edu assay, cell counting Kit-8 (CCK-8), real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), Western blot and other techniques. We also performed oil red O, RT-qPCR, Western blot to explore its effect on the differentiation of preadipocytes. Results: The results of Edu proliferation experiments showed that the number of EDU-positive cells in the overexpression group was significantly less. CCK-8 experiments found that the optical density values of the cells in the overexpression group were lower than those of the control group, the mRNA levels of proliferating cell nuclear antigen (PCNA), cyclin A2 (CCNA2), cyclin B1 (CCNB1), cyclin D2 (CCND2) decreased significantly after CHRNG gene overexpression, the mRNA levels of cyclin dependent kinase inhibitor 1A (CDKN1A) increased significantly, and the protein levels of PCNA, CCNB1, CCND2 decreased significantly. Overexpression of CHRNG inhibited the differentiation of bovine preadipocytes. The results of oil red O and triglyceride determination showed that the size and speed of lipid droplets accumulation in the overexpression group were significantly lower. The mRNA and protein levels of peroxisome proliferator activated receptor gamma (PPAR class="checkNonKBPoint">γ), CCAAT enhancer binding protein alpha (CEBPα), fatty acid binding protein 4 (FABP4), fatty acid synthase (FASN) decreased significantly. Conclusion: Overexpression of CHRNG in bovine preadipocytes inhibits the proliferation and differentiation of bovine preadipocytes.

Effect of severe acute respiratory syndrome coronavirus 2 infection during pregnancy in K18-hACE2 transgenic mice

  • Byeongseok, Kim;Ki Hoon, Park;Ok-Hee, Lee;Giwan, Lee;Hyukjung, Kim;Siyoung, Lee;Semi, Hwang;Young Bong, Kim;Youngsok, Choi
    • Animal Bioscience
    • /
    • 제36권1호
    • /
    • pp.43-52
    • /
    • 2023
  • Objective: This study aimed to examine the influence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on pregnancy in cytokeratin-18 (K18)-hACE2 transgenic mice. Methods: To determine the expression of hACE2 mRNA in the female reproductive tract of K18-hACE2 mice, real-time polymerase chain reaction (RT-PCR) was performed using the ovary, oviduct, uterus, umbilical cord, and placenta. SARS-CoV-2 was inoculated intranasally (30 μL/mouse, 1×104 TCID50/mL) to plug-checked K18-hACE2 homozygous female mice at the pre-and post-implantation stages at 2.5 days post-coitum (dpc) and 15.5 dpc, respectively. The number of implantation sites was checked at 7.5 dpc, and the number of normally born pups was investigated at 20.5 dpc. Pregnancy outcomes, including implantation and childbirth, were confirmed by comparison with the non-infected group. Tissues of infected mice were collected at 7.5 dpc and 19.5 dpc to confirm the SARS-CoV-2 infection. The infection was identified by performing RT-PCR on the infected tissues and comparing them to the non-infected tissues. Results: hACE2 mRNA expression was confirmed in the female reproductive tract of the K18-hACE2 mice. Compared to the non-infected group, no significant difference in the number of implantation sites or normally born pups was found in the infected group. SARS-CoV-2 infection was detected in the lungs but not in the female reproductive system of infected K18-hACE2 mice. Conclusion: In K18-hACE2 mice, intranasal infection with SARS-CoV-2 did not induce implantation failure, preterm labor, or miscarriage. Although the viral infection was not detected in the uterus, placenta, or fetus, the infection of the lungs could induce problems in the reproductive system. However, lung infections were not related to pregnancy outcomes.

OMC-2010 구성약재가 마우스의 비장세포 cytokine 생성에 미치는 영향 (Effects of OMC-2010 constituents on cytokine productions in mouse spleen cells)

  • 배기상;김현식;박경철;최선복;조일주;이창혁;서상완;김종진;신용국;김민선;박규환;송호준;박성주
    • 대한본초학회지
    • /
    • 제27권6호
    • /
    • pp.49-54
    • /
    • 2012
  • Objective : We recently reported that OMC-2010 has an immuno-modulatory effects via inhibiting tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-5. However, we did not find out which constituents play an important role in immuno-modulatory effect of OMC-2010. Thus, this study was performed to estimate the effects of constituents of OMC-2010 on cytokine production in mouse spleen cells, then ultimately reach to find out effective constituents regulating splenic cytokine production. Methods : Mouse spleen cells were pre-treated with water and ethanol extract of constituents of OMC-2010 such as Rehmannia glutinosa (RG), Pinellia ternata (PT), Citrus unshiu Markovich (CUM), Glycyrrhiza uralensis (GU), Platycodon grandiflorum (PG), Schisandra chinensis (SC). After 1 h, the cells were stimulated with lipopolysaccharide (LPS, 1 ${\mu}g/ml$) for 48 h. Then the cells were harvested for real-time reverse transcription polymerase chain reaction to detect cytokine productions. Results : The water extract of RG extract significantly inhibited the LPS-induced inTNF-${\alpha}$ and IL-5 mRNA expressions, but the water extract of PT, CUM, GU, PG, and SC did not. The ethanol extract of RG, PT, and SC significantly inhibited the LPS-induced TNF-${\alpha}$, and IL-5 mRNA expressions, but the ethanol extract of CUM, GU, and PG did not. Conclusions : Theses results could suggest that the water extract of RG and the ethanol extract of RG, PT, and SC inhibited the expression of TNF-${\alpha}$ and IL-5, which means that the possible candidate of OMC-2010 water extract's action might be RG, and ethanol extract's action might be RG, PR, and SC.

Tetramethylpyrazine이 LPS의 뇌실주입에 따른 생쥐 뇌조직의 Pro-Inflammatory Cytokines 발현에 미치는 영향 (Effect of Tetramethylpyrazine on Pro-Inflammatory Cytokine Expressions in Mouse Brain Tissue following Intracerebroventricular Lipopolysaccharide Treatment)

  • 최용석;원종우;유인우;신정원;김성준;손낙원
    • 대한본초학회지
    • /
    • 제28권1호
    • /
    • pp.83-90
    • /
    • 2013
  • Objectives : Tetramethylpyrazine (TMP) is an active ingredient in Ligusticum wallichii and has a wide range of neuroprotection effects. This study investigated anti-neuroinflammatory effect of TMP on brain regions in intracerebroventricular (i.c.v.) lipopolysaccharide (LPS)-treated C57BL/6 mice. Methods : TMP was administered intraperitoneally at doses of 10, 20, and 30 mg/kg at 1 h prior to LPS (3 mg/kg) i.c.v. injection. mRNA level of pro-inflammatory cytokines, including tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin (IL)-$1{\beta}$ and IL-6, was measured in the cerebral cortex, hippocampus, and hypothalamus tissue using real-time polymerase chain reaction at 24 h after the LPS injection. Cyclooxygenase-2 (COX-2) positive cells in the hypothalamus was also observed using immunohistochemistry at 24 h after the LPS injection. Results : At a dose of 30 mg/kg TMP significantly attenuated up-regulation of TNF-${\alpha}$ and IL-$1{\beta}$ mRNA in the cerebral cortex and IL-$1{\beta}$ mRNA in the hippocampus. In the hypothalamus, doses of 20 mg/kg and 30 mg/kg TMP significantly attenuated up-regulation of TNF-${\alpha}$, IL-$1{\beta}$, and IL-6 mRNA induced by the LPS injection. In addition, TMP (30 mg/kg) significantly reduced the number of COX-2 positive cells in the hypothalamus. Conclusion : These results indicate that TMP has an anti-inflammatory effect on neuroinflammation, especially in the hypothalamus, induced by LPS i.c.v. injection and suggest that TMP-containing Ligusticum wallichii may play a modulatory role on the systemic responses following hypothalamic inflammation.

OMC-2010 구성약재 배합추출물 투여가 Ovalbumin으로 유도한 마우스 알레르기성 기관지 천식에 미치는 영향 (Effects of OMC-2010 Constituents Extract on the Ovalbumin-Induced Allergic Asthma in Mice)

  • 조일주;배기상;최선복;송호준;박성주;서상완;옥주안;김민선;백선종;배익현;김현식
    • 대한본초학회지
    • /
    • 제28권5호
    • /
    • pp.87-93
    • /
    • 2013
  • Objectives : We recently have reported that constituents of OMC-2010 have an immuno-modulatory effects via inhibiting tumor necrosis factor (TNF)-alpha and interleukin (IL)-5. In this study, based on previous data, we investigated the effects of combinations with each OMC constituents on splenocyte cytotoxicity, cytokine productions, and ovalbumin (OVA) induced experimental allergic asthma. Methods : Mouse splenocytes were pre-treated with ethanol extract of constituents of Rehmannia glutinosa (RG), Pinellia ternata (PT), Schisandra chinensis (SC). We made 4 combinations using RG, PT, and SC (A;1:1:1, B;2:1:1, C;1:2:1, D;1:1:2). The cells were pretreated with A, B, C, or D for 1 h, then stimulated with lipopolysaccharide (LPS, $1{\mu}g/ml$) for 48 h. Then the cells were harvested for real-time reverse transcription polymerase chain reaction to detect cytokine productions. Then using effective combination from RG, PR and SC, we administrated the combination orally, then challenged with OVA to induce asthma. Then we analyzed the airway hyper-reactivity (AHR), lung histology and lung TNF-${\alpha}$ and IL-5 mRNA. Results : A. B. C. and D did not showed significant cytotoxicity on splenocytes. Pre-treatment of A inhibited the expression of TNF-${\alpha}$ and IL-5 significantly, but not B, C, and D. In experimental asthma, administration of A significantly inhibited the increase of AHR, lung damage, TNF-${\alpha}$ and IL-5 expression. Conclusions : Theses results could suggest that inhibitory effects of the ideal combination with RG, PT and SC (1:1:1) could be applied to treatment of asthma and study of asthma mechanisms.

Ginsenoside Rg3이 Lipopolysaccharide에 의한 생쥐 뇌조직의 Cyclooxygenase-2 발현에 미치는 영향 (Effect of Ginsenoside Rg3 on COX-2 Expression in Brain Tissue of Lipopolysaccharide-Treated Mice)

  • 최원익;조용덕;이준석;신정원;김성준;손낙원
    • 대한본초학회지
    • /
    • 제27권6호
    • /
    • pp.131-137
    • /
    • 2012
  • Objectives : Cyclooxygenase (COX) plays a central role in the inflammatory cascade by converting arachidonic acid into prostaglandin. COX-2 is typically induced by inflammatory stimuli in the majority of tissues, it is responsible for propagating the inflammatory response and thus, considered as the best target for anti-inflammatory drugs. The present study investigated the modulatory effect of ginsenoside Rg3, a principle active ingredient in Panax ginseng, on COX-2 expression in the brain tissue induced by systemic lipopolysaccharide (LPS) treatment in C57BL/6 mice. Methods : Because systemic LPS treatment induces COX-2 expression immediately in the brain, ginsenoside Rg3 was treated orally with doses of 10, 20, and 30 mg/kg at 1 hour before the LPS (3 mg/kg, i.p.) injection. At 4 hours after the LPS injection, COX-2 mRNA was measured by real-time polymerase chain reaction method, COX-2 protein levels were measured by Western blotting. In addition, COX-2 expressions in brain tissue were observed with immunohistochemistry and double immunofluoresence labeling. Results : Ginsenoside Rg3 (20 and 30 mg/kg) significantly attenuates up-regulation of COX-2 mRNA and protein expression in brain tissue at 4 hours after the LPS injection. Moreover, ginsenoside Rg3 (20 mg/kg) significantly reduced the number of COX-2 positive neurons in the cerebral cortex and amygdala. Conclusion : These results indicate that ginsenoside Rg3 plays a modulatory role in neuroinflammation through the inhibition of COX-2 expression in the brain and suggest that ginsenoside Rg3 and ginseng may be effective on neurodegenerative diseases caused by neuroinflammation.