• Title/Summary/Keyword: Real-Time Impact Evaluation

Search Result 50, Processing Time 0.022 seconds

A computer Hardware Selection Strategy for Information Systems Development : A Case of T Coil Service Center (정보시스템 구축시 컴퓨터 하드웨어의 선정전략 - T 철강회사의 시스템 선정 사례 -)

  • Yu, Sang-Jin;Jang, Yeong-Taek
    • Asia pacific journal of information systems
    • /
    • v.3 no.2
    • /
    • pp.3-54
    • /
    • 1993
  • Recently, executives learned of the strategic impact that information systems (IS) and information technology (IT) could provide to their organizations. In other words, through IS/IT companies could squelch competition, secure suppliers, obtain customer loyalty, reduce the threat of new entrants, and identify new opportunities. Because of these potential benefits, organizations are investing ever-increasing amount of organizational resources in IS/IT to make their organizations as information-based ones. Information-based organizations depend largely upon computer hardwares and softwares for their ongoing operations and management. Thus, organizations must manage their information resources, especially hardwares and softwares very effectively to remain competitive. Information resource management (IRI) is a program of activities directed at making effective use of information technology within an organization. These activities cover from corporate IS/IT planning to application system development, implementation, and maintenance. In more detail, IRV activities include planning for and acquiring computer hardwares and communication equipments, planning for, selection, and management of software development projects, and re-engineering business processes as IS/IT are integrated into organizational management. Among these activities, planning for and acquisition of computer hardwares, and planning for and management of software projects are the most critical ones since these activities require enormous amount of such important corporate resources as money, people, and time. Furthermore, corporate's eventual success largely depends upon whether corporate's policy on IS/IT is effective one or not. Numerous approaches and concepts to specific IRM activities have been proposed. However, many organizations have experienced various problems in the process of applying these approaches to their IRM activities mainly because existing methodologies and guidelines are too general to adapt to each firm's unigue situation. Also, these approaches are having its own strengths and weaknesses. Thus, people in charge of organization's IRM policy should come up with effective guidelines to maintain his position very long. In this study, we reviewed some existing approaches for planning, evaluation, and acquisition of computer hardware. Then, real experiences from Taechang Steel Co., Ltd. located in Taegu, which is one of the largest Coil Service Centers in Korea, are discussed. The major purposes of the study are : (1) to discuss the tradeoffs of existing approaches on hardware evaluation and acquisition, (2) to provide a real experience of a company to facilitate the application of theoretical concepts to the real environment.

  • PDF

Performance Evaluation of SDN Controllers: RYU and POX for WBAN-based Healthcare Applications

  • Lama Alfaify;Nujud Alnajem;Haya Alanzi;Rawan Almutiri;Areej Alotaibi;Nourah Alhazri;Awatif Alqahtani
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.219-230
    • /
    • 2023
  • Wireless Body Area Networks (WBANs) have made it easier for healthcare workers and patients to monitor patients' status continuously in real time. WBANs have complex and diverse network structures; thus, management and control can be challenging. Therefore, considering emerging Software-defined networks (SDN) with WBANs is a promising technology since SDN implements a new network management and design approach. The SDN concept is used in this study to create more adaptable and dynamic network architectures for WBANs. The study focuses on comparing the performance of two SDN controllers, POX and Ryu, using Mininet, an open-source simulation tool, to construct network topologies. The performance of the controllers is evaluated based on bandwidth, throughput, and round-trip time metrics for networks using an OpenFlow switch with sixteen nodes and a controller for each topology. The study finds that the choice of network controller can significantly impact network performance and suggests that monitoring network performance indicators is crucial for optimizing network performance. The project provides valuable insights into the performance of SDN-based WBANs using POX and Ryu controllers and highlights the importance of selecting the appropriate network controller for a given network architecture.

Water Quality Similarity Evaluation in Geum River Using Water Quality Monitoring Network Data (물환경측정망 자료를 활용한 금강수계 수질 유사도 평가)

  • Kim, Jeehyun;Chae, Minhee;Yoon, Johee;Seok, Kwangseol
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.2
    • /
    • pp.75-88
    • /
    • 2021
  • Six locations in the automated monitoring network at the Geum River Basin were selected forthis study. The water quality characteristics at two of the locations in the water quality monitoring network that were identical, or nearby, were examined, and their correlations were evaluated through statistical analysis. The results of the water quality analysis were converted to the water quality index and expressed in grades for comparison. For the data necessary for the study, public data from four years, from 2016-2019 were used and the evaluation parameters were water temperature, pH, EC, DO, TOC, TN, and TP. Results of the analysis showed that the water quality concentrations measured in the automated monitoring network and the water quality monitoring network differed in some measured values, but they tended to register variation in a specified ratio in most of the locations in the network. The analysis of the correlations of the parameters between the two monitoring networks found that water temperature, EC, and DO showed high correlations between the two monitoring networks. The TOC, TN, and TP showed high correlations, with a 0.7 or higher (correlation coefficient r), with the exception of some of the monitoring networks, although their correlations were lower than those of the basic parameters. The water quality index analysis showed that the water quality index values of the automated monitoring network and the water quality monitoring network were similar. The water quality index decreased and the pollution degree increased in the downstream direction, in both networks.

Implementation of 3D Road Surface Monitoring System for Vehicle based on Line Laser (선레이저 기반 이동체용 3차원 노면 모니터링 시스템 구현)

  • Choi, Seungho;Kim, Seoyeon;Kim, Taesik;Min, Hong;Jung, Young-Hoon;Jung, Jinman
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.101-107
    • /
    • 2020
  • Road surface measurement is an essential process for quantifying the degree and displacement of roughness in road surface management. For safer road surface management and quick maintenance, it is important to accurately measure the road surface while mounted on a vehicle. In this paper, we propose a sophisticated road surface measurement system that can be measured on a moving vehicle. The proposed road surface measurement system supports more accurate measurement of the road surface by using a high-performance line laser sensor. It is also possible to measure the transverse and longitudinal profile by matching the position information acquired from the RTK, and the velocity adaptive update algorithm allows a manager to monitor in a real-time manner. In order to evaluate the proposed system, the Gocator laser sensor, MRP module, and NVIDIA Xavier processor were mounted on a test mobile and tested on the road surface. Our evaluation results demonstrate that our system measures accurate profile base on the MSE. Our proposed system can be used not only for evaluating the condition of roads but also for evaluating the impact of adjacent excavation.

A Study for Security-Based Medical Information Software Architecture Design Methodology (의료정보보안 기반 소프트웨어 아키텍처 설계방법)

  • Kim, Jeom Goo;Noh, SiChoon
    • Convergence Security Journal
    • /
    • v.13 no.6
    • /
    • pp.35-41
    • /
    • 2013
  • What is an alternative to medical information security of medical information more secure preservation and safety of various types of security threats should be taken, starting from the software design. Interspersed with medical information systems medical information to be able to integrate the real-time exchange of medical information must be reliable data communication. The software architecture design of medical information systems and sharing of medical information security issues and communication phase allows the user to identify the requirements reflected in the software design. Software framework design, message standard design, design a web-based inter-process communication procedures, access control algorithm design, architecture, writing descriptions, evaluation of various will procedure the establishing architecture. The initial decision is a software architecture design, development, testing, maintenance, ongoing impact. In addition, the project will be based on the decision in detail. Medical information security method based on the design software architecture of today's medical information security has become an important task of the framework will be able to provide.

Evaluation of Combined Quantification of PCA3 and AMACR Gene Expression for Molecular Diagnosis of Prostate Cancer in Moroccan Patients by RT-qPCR

  • Maane, Imane Abdellaoui;El Hadi, Hicham;Qmichou, Zineb;Al Bouzidi, Abderrahmane;Bakri, Youssef;Sefrioui, Hassan;Dakka, Nadia;Moumen, Abdeladim
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.12
    • /
    • pp.5229-5235
    • /
    • 2016
  • Prostate cancer (PCa) remains one of the most widespread and perplexing of all human malignancies. Assessment of gene expression is thought to have an important impact on cancer diagnosis, prognosis and therapeutic decisions. In this context, we explored combined expression of PCa related target genes AMACR and PCA3 in 126 formalin fixed paraffin embedded prostate tissues (FFPE) from Moroccan patients, using quantitative real time reverse transcription-PCR (RT-qPCR). This quantification required data normalization accomplished using stably expressed reference genes (RGs). A panel of twelve RG was assessed, data being analyzed using GenEx V6 based on geNorm, NormFinder and statistical methods. Accordingly, the hnRNP A1 gene was identified and selected as the most stably expressed RG for reliable and accurate gene expression quantification in prostate tissues. The ratios of both PCA3 and AMACR gene expression relative to that of the hnRNP A1 gene were calculated and the performance of each target gene for PCa diagnosis was evaluated using receiver-operating characteristics. PCA3 and AMACR mRNA quantification based on RT-qPCR may prove useful in PCa diagnosis. Of particular interesting, combining PCA3 and AMACR quantification improved PCa prediction by increasing sensitivity with retention of good specificity.

A Study on the Characteristics of Underwater Explosion for the Development of a Non-Explosive Test System (무폭약 시험 장치 개발을 위한 수중폭발 특성에 대한 연구)

  • Lee, Hansol;Park, Kyudong;Na, Yangsub;Lee, Seunggyu;Pack, Kyunghoon;Chung, Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.6
    • /
    • pp.322-330
    • /
    • 2020
  • This study deals with underwater explosion (UNDEX) characteristics of various non-explosive underwater shock sources for the development of non-explosive underwater shock testing devices. UNDEX can neutralize ships' structure and the equipment onboard causing serious damage to combat and survivability. The shock proof performance of naval ships has been for a long time studied through simulations, but full-scale Live Fire Test and Evaluation (LFT&E) using real explosives have been limited due to the high risk and cost. For this reason, many researches have been tried to develop full scale ship shock tests without using actual explosives. In this study, experiments were conducted to find the characteristics of the underwater shock waves from actual explosive and non-explosive shock sources such as the airbag inflators and Vaporizing Foil Actuator (VFA). In order to derive the empirical equation for the maximum pressure value of the underwater shock wave generated by the non-explosive impact source, repeated experiments were conducted according to the number and distance. In addition, a Shock Response Spectrum (SRS) technique, which is a frequency-based function, was used to compare the response of floating bodies generated by underwater shock waves from each explosion source. In order to compare the magnitude of the underwater shock waves generated by each explosion source, Keel Shock Factor (KSF), which is a measure for estimating the amount of shock experienced by a naval ship from an underwater explosionan, was used.

Evaluation of Single and Binary Mixture Toxicity of Organic UV-Filters Using H295R Cells (H295R 세포를 활용한 유기 UV-Filters의 단일 및 혼합독성 평가)

  • Bomee Lee;Inhye Lee;Kyunghee Ji
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.3
    • /
    • pp.201-211
    • /
    • 2024
  • Background: Organic ultraviolet (UV) filters are widely used in sunscreen products and have been identified as an emerging contaminant. Organic UV filters co-exist with multiple components, but their mixture toxicity remains largely unknown. Objectives: We investigated the toxicity of single and binary mixtures of commonly used UV-filters using the human adrenocarcinoma (H295R) cell line. Methods: After exposure to non-cytotoxic concentrations of avobenzone (AVO), homosalate (HS), octisalate (OS), octinoxate (OMC), and octocrylene (OC), the levels of testosterone (T) and 17β-estradiol (E2) were measured. The median effective concentration (EC50) values for the E2 of the individual substances were used to determine the mixture effect of four binary combinations: OMC+AVB, OMC+HS, OMC+OS, and OMC+OC. The synergistic, additive, and antagonistic effects of the mixture were determined by calculating toxic units (TU). To examine the mechanism of mixture toxicity, eight genes involved in steroidogenesis were analyzed using the real-time polymerase chain reaction. Results: The significant increase in E2 in H295R cells exposed to AVO, HS, OS, OMC, and OC suggest an estrogenic effect of the tested UV-filters. A significant decrease in T was observed in cells exposed to HS and OS. EC50 values for E2 increase were 105 nM for AVO, 110 nM for HS, 120 nM for OS, 55 nM for OMC, and 80 nM for OC. Both binary mixtures consisting of OMC+HS and OMC+OS have synergistic effects. Conclusions: Our results showed that five types of UV-filter substances increase E2 in H295R cells. We examined the mixture toxicity in terms of increased estrogenicity and confirmed that E2 significantly increased when OMC was mixed with a salicylate-based UV-filters. These findings highlight the importance of determining the impact of UV filter mixtures.

Research on artificial intelligence based battery analysis and evaluation methods using electric vehicle operation data (전기 차 운행 데이터를 활용한 인공지능 기반의 배터리 분석 및 평가 방법 연구)

  • SeungMo Hong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.385-391
    • /
    • 2023
  • As the use of electric vehicles has increased to minimize carbon emissions, the analyzing the state and performance of lithium-ion batteries that is instrumental in electric vehicles have been important. Comprehensive analysis using not only the voltage, current and temperature of the battery pack, which can affect the condition and performance of the battery, but also the driving data and charging pattern data of the electric vehicle is required. Therefore, a thorough analysis is imperative, utilizing electric vehicle operation data, charging pattern data, as well as battery pack voltage, current, and temperature data, which collectively influence the condition and performance of the battery. Therefore, collection and preprocessing of battery data collected from electric vehicles, collection and preprocessing of data on driver driving habits in addition to simple battery data, detailed design and modification of artificial intelligence algorithm based on the analyzed influencing factors, and A battery analysis and evaluation model was designed. In this paper, we gathered operational data and battery data from real-time electric buses. These data sets were then utilized to train a Random Forest algorithm. Furthermore, a comprehensive assessment of battery status, operation, and charging patterns was conducted using the explainable Artificial Intelligence (XAI) algorithm. The study identified crucial influencing factors on battery status, including rapid acceleration, rapid deceleration, sudden stops in driving patterns, the number of drives per day in the charging and discharging pattern, daily accumulated Depth of Discharge (DOD), cell voltage differences during discharge, maximum cell temperature, and minimum cell temperature. These factors were confirmed to significantly impact the battery condition. Based on the identified influencing factors, a battery analysis and evaluation model was designed and assessed using the Random Forest algorithm. The results contribute to the understanding of battery health and lay the foundation for effective battery management in electric vehicles.

Comparative Evaluation of UAV NIR Imagery versusin-situ Point Photo in Surveying Urban Tributary Vegetation (도심소하천 식생조사에서 현장사진과 UAV 근적외선 영상의 비교평가)

  • Lee, Jung-Joo;Hwang, Young-Seok;Park, Seong-Il;Um, Jung-Sup
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.5
    • /
    • pp.475-488
    • /
    • 2018
  • Surveying urban tributary vegetation is based mainly on field sampling at present. The tributary vegetation survey integrating UAV NIR(Unmanned Aerial Vehicle Near Infrared Radiance) imagery and in-situ point photo has received only limited attentions from the field ecologist. The reason for this could be the largely undemonstrated applicability of UAV NIR imagery by the field ecologist as a monitoring tool for urban tributary vegetation. The principal advantage of UAV NIR imagery as a remote sensor is to provide, in a cost-effective manner, information required for a very narrow swath target such as urban tributary (10m width or so), utilizing very low altitude flight, real-time geo-referencing and stereo imaging. An exhaustive and realistic comparison of the two techniques was conducted, based on operational customer requirement of urban tributary vegetation survey: synoptic information, ground detail and quantitative data collection. UAV NIR imagery made it possible to identify area-wide patterns of the major plant communities subject to many different influences (e.g. artificial land use pattern), which cannot be acquired by traditional field sampling. Although field survey has already gained worldwide recognition by plant ecologists as a typical method of urban tributary vegetation monitoring, this approach did not provide a level of information that is either scientifically reliable or economically feasible in terms of urban tributary vegetation (e.g. remedial field works). It is anticipated that this research output could be used as a valuable reference for area-wide information obtained by UAV NIR imagery in urban tributary vegetation survey.