• 제목/요약/키워드: Real-Time Event Detect

검색결과 62건 처리시간 0.017초

빅데이터 환경에서 프로세스 마이닝을 이용한 영업감사 상시 모니터링 강화에 대한 연구 (A Study on Continuous Monitoring Reinforcement for Sales Audit Using Process Mining Under Big Data Environment)

  • 유영석;박한규;백승훈;홍성찬
    • 인터넷정보학회논문지
    • /
    • 제17권6호
    • /
    • pp.123-131
    • /
    • 2016
  • 빅데이터 환경 하에서 프로세스 마이닝은 업무수행 시 발생하는 수많은 데이터들을 활용하여 기업의 ERP시스템 상의 이벤트 로그로부터 프로세스의 수행과 개선에 관련한 많은 정보 및 통찰력을 얻게 해준다. 최근에는 프로세스 마이닝의 최대 강점을 활용하여, 기업조직의 감사업무에 적극적으로 활용하려고 하는 다양한 연구 활동이 활발히 진행 중에 있다. 그러나 프로세스 마이닝을 이용한 영업감사 적용에 관한 최근의 국내 연구는 빅데이터 환경 하에서는 매우 미흡한 실정이다. 이러한 상황에 착안해서, 본 연구는 프로세스 마이닝이 감사 분야에 적용된 기존 연구를 한층 더 강화시킴으로써, 온라인 방식 및 전통적 감사에 최적으로 적용할 수 있는 프로세스 마이닝 적용 방안을 제안하고자 한다. 또한 빅데이터 환경하에서 기업 조직의 리스크 발생 요인들을 사전에 모니터링함으로써, 리스크의 조기 발견 및 이를 예방할 수 있는 상시 모니터링 정보 서비스 시스템을 제안한다. 이를 위해서 리스크 요인을 기반으로 데이터들을 추출하고 평가에 대한 관리기준을 설정한다. 본 논문의 연구의 범위는 영업감사에 있어 실제 사례를 통해 위험요소의 사전 검증 시스템을 설계 한다. 그리고 이러한 영업감사 시스템을 통해 예방감사 실현, 높은 리스크 요인들에 대한 상시 대응, 사기 발생 억제, 규칙 및 지침 위반에 대한 적시조치, 경영환경 변화에 대한 감사 아이템 추가 발굴 체계 구축, 프로세스 개선 중심의 사전적인 컨설팅 감사의 실현, 내부통제 회계제도 준수 및 강화를 행한다. 이 결과로 영업 감사 실시간 관련 통합 모니터링이 강화되어 재무 리스크 회피, 감사기간 단축 및 감사 품질 개선 등의 효과가 나타났다.

Fully-Polarimetric ALOS-2 자료를 이용한 산사태 탐지 알고리즘 개발 (Development of Landslide Detection Algorithm Using Fully Polarimetric ALOS-2 SAR Data)

  • 김민화;조근후;박상은;조재형;문효이;한승훈
    • 자원환경지질
    • /
    • 제52권4호
    • /
    • pp.313-322
    • /
    • 2019
  • SAR (Synthetic Aperture Radar) 원격탐사 관측 자료는 폭우나 태풍으로 인해 넓은 지역에 걸쳐 발생할 수 있는 산사태 피해 지역을 신속하게 탐지하는데 매우 유용한 도구이다. 본 연구의 목적은 산사태 발생 이후에 관측이 수행된 다중 편광 SAR 자료를 이용하여 산사태 지역을 자동으로 분류하는 효과적인 알고리즘을 개발하는 것이다. 실험적인 분석을 바탕으로 SAR 관측 자료로부터 산사태를 탐지하기 위해서는 SAR 영상의 스펙클 현상을 줄여주는 스펙클 필터와 경사진 지형에서의 기하왜곡을 보정하는 정사보정이 필수적임을 확인하였고, IDAN 필터를 적용하여 스펙클을 줄이고 다중 편광 파라미터를 추정한 후에 정사보정을 수행하는 것이 산사태 탐지를 위해 적합한 처리 과정임을 제시하였다. 또한 다양한 다중 편광 파라미터에 대한 탐지 성능 분석을 통해 entropy 파라미터가 산사태 탐지에 좋은 성능을 보임을 파악하였다. 이러한 분석을 토대로 다중 편광 파라미터에 대한 자동적인 문턱값 설정과 DEM을 보조적으로 사용하는 산사태 탐지 알고리즘을 제안하였다. 탐지 알고리즘은 2011년 9월 태풍 탈라스에 의해 발생한 산사태에 대해 관측을 수행한 ALOS-2위성의 PALSAR-2 자료를 이용하여 실험적인 평가를 수행하였고, 약 82%의 탐지율과 3%의 오경보율로 산사태를 탐지 할 수 있음을 확인하였다.