• 제목/요약/키워드: Real-Time Computer Vision

검색결과 361건 처리시간 0.032초

A Review on Meat Quality Evaluation Methods Based on Non-Destructive Computer Vision and Artificial Intelligence Technologies

  • Shi, Yinyan;Wang, Xiaochan;Borhan, Md Saidul;Young, Jennifer;Newman, David;Berg, Eric;Sun, Xin
    • 한국축산식품학회지
    • /
    • 제41권4호
    • /
    • pp.563-588
    • /
    • 2021
  • Increasing meat demand in terms of both quality and quantity in conjunction with feeding a growing population has resulted in regulatory agencies imposing stringent guidelines on meat quality and safety. Objective and accurate rapid non-destructive detection methods and evaluation techniques based on artificial intelligence have become the research hotspot in recent years and have been widely applied in the meat industry. Therefore, this review surveyed the key technologies of non-destructive detection for meat quality, mainly including ultrasonic technology, machine (computer) vision technology, near-infrared spectroscopy technology, hyperspectral technology, Raman spectra technology, and electronic nose/tongue. The technical characteristics and evaluation methods were compared and analyzed; the practical applications of non-destructive detection technologies in meat quality assessment were explored; and the current challenges and future research directions were discussed. The literature presented in this review clearly demonstrate that previous research on non-destructive technologies are of great significance to ensure consumers' urgent demand for high-quality meat by promoting automatic, real-time inspection and quality control in meat production. In the near future, with ever-growing application requirements and research developments, it is a trend to integrate such systems to provide effective solutions for various grain quality evaluation applications.

차량 탑승 인원 감지를 위한 트리거 기술에 관한 연구 (A Study on the Trigger Technology for Vehicle Occupant Detection)

  • 이동진;이지원;장종욱;장성진
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.120-122
    • /
    • 2021
  • 현재 국내외 자동차 수요가 증가하게 되면서 차량탑승 인원은 적어지고 차량 수는 증가하는 추세이다. 이는 교통체증이 더 심해지게 되는 주요 원인이 된다. 이를 해결하기 위해 다인승 전용차로, HOV(High-occupancy vehicle) lane을 운영하고 있지만, 이용 조건을 무시하고 불법으로 이용하는 사람들이 계속 증가하고 있다. 이러한 불법행위를 경찰이 육안으로 판단하여 단속하기 때문에 단속 정확도도 낮으며 효율이 떨어진다. 본 논문에서는 이와 같은 문제를 해결하기 위해 컴퓨터 비전을 이용한 영상 분석 기술을 이용해서 보다 효율적인 탐지를 할 수 있는 시스템 설계를 제안한다. 기존의 연구되었던 차량 탐지 방법을 개선하여 영상 안에서 트리거를 설정하여 탐지 객체가 선정된 후 대상에 대해서 집중적으로 영상 분석을 진행할 수 있게 설계했으며 딥러닝 객체 인식 모델인 YOLO 모델을 사용하여 실시간 객체 탐지와 정확한 신호를 얻기 위해 영상 내 bounding box로 판단하는 것이 아닌 중심점의 이동량을 이용하는 방법을 제안한다.

  • PDF

딥러닝을 위한 모폴로지를 이용한 수중 영상의 세그먼테이션 (Segmentation of underwater images using morphology for deep learning)

  • 이지은;이철원;박석준;신재범;정현기
    • 한국음향학회지
    • /
    • 제42권4호
    • /
    • pp.370-376
    • /
    • 2023
  • 수중영상은 수중 잡음과 낮은 해상도로 표적의 형상과 구분이 명확하지 않다. 그리고 딥러닝의 입력으로 수중영상은 전처리가 필요하며 Segmentation이 선행되어야 한다. 전처리를 하여도 표적은 명확하지 않으며 딥러닝에 의한 탐지, 식별의 성능도 높지 않을 수 있다. 따라서 표적을 구분하며 명확하게 하는 작업이 필요하다. 본 연구에서는 수중영상에서 표적 그림자의 중요성을 확인하고 그림자에 의한 물체 탐지 및 표적 영역 획득, 그리고 수중배경이 없는 표적과 그림자만의 형상이 담긴 데이터를 생성하며 더 나아가 픽셀값이 일정하지 않은 표적과 그림자 영상을 표적은 흰색, 그림자는 흑색, 그리고 배경은 회색의 3-모드의 영상으로 변환하는 과정을 제시한다. 이를 통해 딥러닝의 입력으로 명확히 전처리된 판별이 용이한 영상을 제공할 수 있다. 또한 처리는 Open Source Computer Vision(OpenCV)라이브러리의 영상처리 코드를 사용했으면 처리 속도도 역시 실시간 처리에 적합한 결과를 얻었다.

웹 카메라를 통한 실시간 모니터링 시스템 (Real time Monitoring System using Web Camera)

  • 류광희;최종근;임영태;박연식;정회경
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 춘계종합학술대회
    • /
    • pp.667-670
    • /
    • 2005
  • 보안과 감시에 대한 사람들의 관심이 높아지면서 무인화에 초점을 맞춘 CCTV(Closed-circuit Television) 시장이 형성되었고, 디지털 영상 압축 기술과 인터넷이 급격히 발전함으로써 인터넷 기반의 웹 카메라가 새롭게 등장하였다. 웹 카메라의 특징은 기존의 CCTV와 다르게 장소에 구별 없이 네트워크가 이루어지는 곳에서 CCTV보다 좋은 화질의 영상을 볼 수 있는 것이다. 그러나 시스템 관리자에게는 웹 브라우저에서 웹 카메라 서버로 접속된 사용자에게만 해당 카메라의 영상을 보여주는 웹 카메라의 방식은 불편한 단점이다. 이에 본 논문에서는 여러 영상을 단일화면으로 구성한 멀티비전 인터페이스와 시스템 관리의 효율성을 높이기 위해 영상을 저장하는 기능 및 특정 시간에 저장이 이루어지는 스케줄링 기능을 구현 및 설계하였다.

  • PDF

실시간 손가락 제스처 인식 (Real-time Finger Gesture Recognition)

  • 박재완;송대현;이칠우
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.847-850
    • /
    • 2008
  • 오늘날 인간은 기계와의 상호의사소통을 이용하여 기계를 더욱 발전시켜가고 있다. 시각기반인지시스템을 비롯한 여러 HCI(Human Computer Interaction)시스템 중 손가락 제스처를 인식, 추적하는 기술은 HCI 시스템에서 매우 중요한 부분을 차지하고 있다. 이 논문에서는 손가락을 구분하기 위해서 제한된 배경과 복잡한 배경에서의 손가락을 구분할 뿐만 아니라 배경과 전경을 분리하는 차영상을 이용하여 더욱더 효과적으로 손가락을 구분해내는 방법을 이용한다. 손가락을 구분하기 위해서는 미리 정의해놓은 손가락 끝 이미지들과 Template-Matching 을 통하여 손가락을 인식한다. 그리고 인식된 손가락을 추적한 후 미리 정의해놓은 제스처들과 비교함으로써 제스처를 인식한다. 이 논문에서는 차영상과 Template Matching 반을 이용하지 않고 미리 관심영역을 획득한 후 그 영역 안에서 Template Matching 을 수행한다. 그래서, 실행속도 및 반응속도를 줄이는 데 중점을 두고 있으며 더욱 효과적으로 제스처를 인식하는 방법에 대해 제안한다.

  • PDF

Object Detection and Localization on Map using Multiple Camera and Lidar Point Cloud

  • Pansipansi, Leonardo John;Jang, Minseok;Lee, Yonsik
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.422-424
    • /
    • 2021
  • In this paper, it leads the approach of fusing multiple RGB cameras for visual objects recognition based on deep learning with convolution neural network and 3D Light Detection and Ranging (LiDAR) to observe the environment and match into a 3D world in estimating the distance and position in a form of point cloud map. The goal of perception in multiple cameras are to extract the crucial static and dynamic objects around the autonomous vehicle, especially the blind spot which assists the AV to navigate according to the goal. Numerous cameras with object detection might tend slow-going the computer process in real-time. The computer vision convolution neural network algorithm to use for eradicating this problem use must suitable also to the capacity of the hardware. The localization of classified detected objects comes from the bases of a 3D point cloud environment. But first, the LiDAR point cloud data undergo parsing, and the used algorithm is based on the 3D Euclidean clustering method which gives an accurate on localizing the objects. We evaluated the method using our dataset that comes from VLP-16 and multiple cameras and the results show the completion of the method and multi-sensor fusion strategy.

  • PDF

플라스틱 재활용을 위한 YOLO기반의 자동 분류시스템 (YOLO Based Automatic Sorting System for Plastic Recycling)

  • 김용준;조태욱;박형근
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.382-384
    • /
    • 2021
  • 본 연구에서는 실시간 물체 인식 알고리즘인 YOLO (You Only Look Once)를 이용하여 플라스틱의 종류를 자동으로 분류하는 시스템을 구현하였다. 시스템은 Nvidia 사에서 만든 딥러닝, 컴퓨터비전용 소형 컴퓨터인 Jetson Nano에 YOLO를 이용하여 플라스틱 분리배출 마크를 인식할 수 있도록 훈련시킨 모델을 탑재하여 구성하였다. 웹캠을 이용해서 플라스틱 쓰레기의 분리배출 마크를 PET, HDPE, PP 세 종류로 인식하고 모터를 조절하여 종류에 따라 분류될 수 있도록 하였다. 이 자동 분류기를 구현함으로 써 사람이 직접 플라스틱 분리배출 마크를 확인하여 분리배출하는 수고를 덜어줄 수 있다는 점에서 편의성을 가지며 정확한 분리수거를 통해 재활용의 효율성을 높일 수 있다.

  • PDF

Specified Object Tracking Problem in an Environment of Multiple Moving Objects

  • Park, Seung-Min;Park, Jun-Heong;Kim, Hyung-Bok;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제11권2호
    • /
    • pp.118-123
    • /
    • 2011
  • Video based object tracking normally deals with non-stationary image streams that change over time. Robust and real time moving object tracking is considered to be a problematic issue in computer vision. Multiple object tracking has many practical applications in scene analysis for automated surveillance. In this paper, we introduce a specified object tracking based particle filter used in an environment of multiple moving objects. A differential image region based tracking method for the detection of multiple moving objects is used. In order to ensure accurate object detection in an unconstrained environment, a background image update method is used. In addition, there exist problems in tracking a particular object through a video sequence, which cannot rely only on image processing techniques. For this, a probabilistic framework is used. Our proposed particle filter has been proved to be robust in dealing with nonlinear and non-Gaussian problems. The particle filter provides a robust object tracking framework under ambiguity conditions and greatly improves the estimation accuracy for complicated tracking problems.

Kinect V2를 이용한 모바일 장치 실시간 알림 모니터링 시스템 (Real-time monitoring system with Kinect v2 using notifications on mobile devices)

  • 니욘사바 에릭;장종욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 춘계학술대회
    • /
    • pp.277-280
    • /
    • 2016
  • 실시간 원격 감지 시스템은 많은 감시 상황에서 중요한 가치를 지니고 있다. 실시간 원격 감지 시스템은 누군가가 그의 장소에서 무슨 일이 일어나고 있는지를 알 수 있게 한다. Kinect의 V2는 컴퓨터에게 눈의 역할을 제공하며 컬러와 깊이 이미지, 오디오 입력과 골격 데이터 등 다양한 데이터를 생성 할 수 있는 새로운 유형의 카메라이다. 본 논문에서는 깊이 이미지와 함께 Kinect V2의 센서를 사용하여, Kinect에 의해 덮인 공간에서의 모니터링 시스템을 제공한다. 따라서 Kinect 카메라에 의해 덮인 공간에 기초하여, 최소 및 최대 거리를 설정함으로써, 깊이의 범위를 이용하여 감시하는 대상 지역을 정의한다. 대상 공간에서 추적 개체가 있는 경우, 컴퓨터 비전 라이브러리(Emgu CV)에서 Kinect 카메라는 이미지 전체의 색상을 캡처하고, 이를 데이터베이스로 전송함으로써 인터넷이 있으면 어디서나 사용자가 자신의 모바일 장치를 통해 접속할 수 있다.

  • PDF

Two person Interaction Recognition Based on Effective Hybrid Learning

  • Ahmed, Minhaz Uddin;Kim, Yeong Hyeon;Kim, Jin Woo;Bashar, Md Rezaul;Rhee, Phill Kyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권2호
    • /
    • pp.751-770
    • /
    • 2019
  • Action recognition is an essential task in computer vision due to the variety of prospective applications, such as security surveillance, machine learning, and human-computer interaction. The availability of more video data than ever before and the lofty performance of deep convolutional neural networks also make it essential for action recognition in video. Unfortunately, limited crafted video features and the scarcity of benchmark datasets make it challenging to address the multi-person action recognition task in video data. In this work, we propose a deep convolutional neural network-based Effective Hybrid Learning (EHL) framework for two-person interaction classification in video data. Our approach exploits a pre-trained network model (the VGG16 from the University of Oxford Visual Geometry Group) and extends the Faster R-CNN (region-based convolutional neural network a state-of-the-art detector for image classification). We broaden a semi-supervised learning method combined with an active learning method to improve overall performance. Numerous types of two-person interactions exist in the real world, which makes this a challenging task. In our experiment, we consider a limited number of actions, such as hugging, fighting, linking arms, talking, and kidnapping in two environment such simple and complex. We show that our trained model with an active semi-supervised learning architecture gradually improves the performance. In a simple environment using an Intelligent Technology Laboratory (ITLab) dataset from Inha University, performance increased to 95.6% accuracy, and in a complex environment, performance reached 81% accuracy. Our method reduces data-labeling time, compared to supervised learning methods, for the ITLab dataset. We also conduct extensive experiment on Human Action Recognition benchmarks such as UT-Interaction dataset, HMDB51 dataset and obtain better performance than state-of-the-art approaches.