• 제목/요약/키워드: Real-Fluid Model

검색결과 228건 처리시간 0.028초

Identification of flutter derivatives of bridge decks using CFD-based discrete-time aerodynamic models

  • Zhu, Zhiwen;Gu, Ming
    • Wind and Structures
    • /
    • 제18권3호
    • /
    • pp.215-233
    • /
    • 2014
  • This paper presents a method to extract flutter derivatives of bridge decks based on a combination of the computational fluid dynamics (CFD), system simulations and system identifications. The incompressible solver adopts an Arbitrary Lagrangian-Eulerian (ALE) formulation with the finite volume discretization in space. The imposed sectional motion in heaving or pitching relies on exponential time series as input, with aerodynamic forces time histories acting on the section evaluated as output. System identifications are carried out to fit coefficients of the inputs and outputs of ARMA models, as to establish discrete-time aerodynamic models. System simulations of the established models are then performed as to obtain the lift and moment exerting on the sections to a sinusoidal displacement. It follows that flutter derivatives are identified. The present approaches are applied to a hexagon thin plate and a real bridge deck. The results are compared to the Theodorsen closed-form solution and those from wind tunnel tests. Satisfactory agreements are observed.

Mega-Float의 동적 특성 해석 (Dynamic Characteristics Analysis of Mega-Float Offshore Structure)

  • 박성현;박석주
    • 대한자원환경지질학회:학술대회논문집
    • /
    • 대한자원환경지질학회 2001년도 춘계 공동학술발표회 논문집
    • /
    • pp.66-70
    • /
    • 2001
  • Recently, mega-float offshore structure is studied as one of the effective utilization of the ocean space. And mega-structure are now being considered for various applications such as floating airports, offshore cities and so on. This mega-float structure is relatively flexible compared with real floating structures like large ships. when we estimate dynamic responses of these structures in waves, the elastic deformation is important, because vertical dimension is small compared with horizontal. The analysis of the dynamic response as it receives regular wave is studied. The finite element method is used in the analysis of structural section of this model. And the analysis is carried out using the boundary element method in the fluid division. In order to know the characteristics of the dynamic response of the mega-float structures, effects of wavelength, water depth, and wave direction on dynamic response of the floating structure are studied by use of numerical calculation.

Mixing Characteristics of Kerosene-Lox in a Swirl Injector at 100 bar

  • Heo, Junyoung;Kang, Jeongseok;Sung, Hong-Gye
    • International Journal of Aerospace System Engineering
    • /
    • 제3권1호
    • /
    • pp.30-38
    • /
    • 2016
  • The The turbulent mixing characteristics of Kerosene-LOx in a coaxial swirl injector 100 bar have been numerically investigated. Turbulent model is based on large eddy simulation with real-fluid transport and thermodynamics. The effects of equation of state (EOS), chamber pressure are evaluated in a point of the mixing efficiency and pressure fluctuations. The dominant frequency is same as the hairpin vortex shedding frequency generated by film wave at the LOx post.

망각 순환 최소자승을 이용한 다축 전지형 크레인의 적응형 모델 독립 제어 기반 조향제어 알고리즘 (Adaptive Model-Free-Control-based Steering-Control Algorithm for Multi-Axle All-Terrain Cranes using the Recursive Least Squares with Forgetting)

  • 오광석;서자호
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권2호
    • /
    • pp.16-22
    • /
    • 2017
  • This paper presents the algorithm of an adaptive model-free-control-based steering control for multi-axle all-terrain cranes for which the recursive least squares with forgetting are applied. To optimally control the actual system in the real world, the linear or nonlinear mathematical model of the system should be given for the determination of the optimal control inputs; however, it is difficult to derive the mathematical model due to the actual system's complexity and nonlinearity. To address this problem, the proposed adaptive model-free controller is used to control the steering angle of a multi-axle crane. The proposed model-free control algorithm uses only the input and output signals of the system to determine the optimal inputs. The recursive least-squares algorithm identifies first-order systems. The uncertainty between the identified system and the actual system was estimated based on the disturbance observer. The proposed control algorithm was used for the steering control of a multi-axle crane, where only the steering input and the desired yaw rate were employed, to track the reference path. The controller and performance evaluations were constructed and conducted in the Matlab/Simulink environment. The evaluation results show that the proposed adaptive model-free-control-based steering-control algorithm produces a sound path-tracking performance.

건식 듀얼 클러치의 열해석 모델에 대한 연구 (A Study on Thermal Analytical Model for a Dry Dual Clutch)

  • 류하오;이재천;노유정;조종환;이희락;고재욱;강지우
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권1호
    • /
    • pp.1-8
    • /
    • 2015
  • The stability of friction characteristics and thermal management for a dry type dual clutch transmission (DCT) are inferior to those of a wet clutch. Too high temperature resulting from frequent engagement of DCT speeds up degradation or serious wear of the pressure plate or burning of the clutch disk lining. Even though it is significantly important to estimate the temperature of a dry double clutch (DDC) in real-time, few meaningful study of the thermal model of DDC has been known yet. This study presented a thermal analytical model of lumped parameters for a DDC by analyzing its each component firstly. Then a series of experimental test was carried out on the test bench with a patented temperature telemetry system to validate the proposed thermal model. The thermal model, whose optimal parameter values were found by optimization algorithm, was also simulated on the experimental test conditions. The simulation results of DDC temperature show consistency with the experiment, which validates the proposed thermal model of DDC.

Wave Response Analysis and Future Direction of Mega-Float

  • Park, Sung-Hyeon
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2001년도 Proceeding of KIN-CIN Joint Symposium 2001 on Satellite Navigation/AIS, lntelligence , Computer Based Marine Simulation System and VDR
    • /
    • pp.153-168
    • /
    • 2001
  • In the country where the population concentrates in the metropolis with the narrow land, development of th ocean space is necessary. Recently, mega-float offshore structure is studied as one of the effective utilization of the ocean space. And very large floating structure are now being considered for various applications such as floating airports, offshore cities and so on. This very large structure is relatively flexible compared with real floating structures like large ships. when we estimate dynamic responses of these structures in waves, the elastic deformation is important, because vertical dimension is small compared with horizontal. And it is necessary to examine the effect of ocean wave eternal force received from the natural environment. In this study, the mat-type large floating structure is made to be analytical model. And the analysis of the dynamic response as it receives regular wave is studied. The finite element method is used in the analysis of structure part of this model. And the analysis is carried out using the boundary element method in the fluid part. In order to know the characteristics of the dynamic response of the large floating structures, effects of wavelength, bending rigidity of the structure, water depth, and wave direction on dynamic response of the floating structure are studied by use of numerical calculation.

  • PDF

Dynamic Modeling and Observer-based Servomechanism Control of a Towing Rope System

  • Tran, Anh Minh D.;Kim, Young Bok
    • 드라이브 ㆍ 컨트롤
    • /
    • 제13권4호
    • /
    • pp.23-30
    • /
    • 2016
  • This paper presents a control-oriented dynamical model of a towing rope system with variable-length. In this system, a winch driven by a motor's torque uses the towing rope to pull a cart. In general, it is a difficult and complicated process to obtain an accurate mathematical model for this system. In particular, if the rope length is varied by operating the winch, the varying rope dynamics needs to be considered, and the key physical parameters need to be re-identified... However, real time parameter identification requires long computation time for the control scheme, and hence undesirable control performance. Therefore, in this article, the rope is modeled as a straight massless segment, with the mass of rope being considered partly with that of the cart, and partly as halfway to the winch. In addition, the changing spring constant and damping constant of the towing rope are accounted for as part of the dynamics of the winch. Finally, a reduced-order observer-based servomechanism controller is designed for the system, and the performance is evaluated by computer simulation.

지형자료 해상도에 따른 대기 유동장 변화에 관한 수치 연구 (Numerical Study on Atmospheric Flow Variation Associated With the Resolution of Topography)

  • 이순환;김선희;류찬수
    • 한국환경과학회지
    • /
    • 제15권12호
    • /
    • pp.1141-1154
    • /
    • 2006
  • Orographic effect is one of the important factors to induce Local circulations and to make atmospheric turbulence, so it is necessary to use the exact topographic data for prediction of local circulations. In order to clarify the sensitivity of the spatial resolution of topography data, numerical simulations using several topography data with different spatial resolution are carried out under stable and unstable synoptic conditions. The results are as follows: 1) Influence of topographic data resolution on local circulation tends to be stronger at simulation with fine grid than that with coarse grid. 2) The hight of mountains in numerical model become mote reasonable with high resolution topographic data, so the orographic effect is also emphasized and clarified when the topographic data resolution is higher. 2) The higher the topographic resolution is, the stronger the mountain effect is. When used topographic data resolution become fine, topography in numerical model becomes closer to real topography. 3) The topographic effect tends to be stronger when atmospheric stability is strong stable. 4) Although spatial resolution of topographic data is not fundamental factor for dramatic improvement of weather prediction accuracy, some influence on small scale circulation can be recognized, especially in fluid dynamic simulation.

고압의 포화수증기-비응축성 수소기체 혼합기 속에서 분무수적으로의 열전달을 예측 (Prediction of Heat Transfer Rates to Spray Water Droplets in a High Pressure Mixture Composed of Saturated Steam and Noncondensable Hydrogen Gas)

  • 이상균;조종철;조진호
    • 설비공학논문집
    • /
    • 제3권5호
    • /
    • pp.337-349
    • /
    • 1991
  • Heat and mass transfer rates to spray water droplets for spray transients in a high pressure vessel have been predicted by two different droplet models: the complete mixing model and the non-mixing model. In this process, the ambient fluid surrounding the droplets is a real-gas mixture composed of saturated steam and noncondensable hydrogen gas at high pressure. The physical properties of the mixture are estimated by applying the concept of compressibility factor and using appropriate correlations. A computer program, DROPHMT, to calculate the heat and mass transfer rates for two different droplet models has been developed. As an illustrative application of the computer program to engineering practices, heat and mass transfer rates to spray water droplets for spray transients in a Pressurized Water Reactor (PWR) pressurizer have been calculated, and the typical results have been provided.

  • PDF

LNG 화물창 단열구조의 슬로싱 충격응답 간이해석법에 관한 연구 (A Study on Simplified Sloshing Impact Response Analysis for Membrane-Type LNG Cargo Containment System)

  • 노인식;기민석;김성찬
    • 대한조선학회논문집
    • /
    • 제48권5호
    • /
    • pp.451-456
    • /
    • 2011
  • To ensure structural integrity of membrane type LNG tank, the rational assessment of the sloshing impact responses of tank structures should be preceded. The sloshing impact pressures acting on the insulation system of LNG tank are typical irregular loads and the resulting structural responses show very complex behaviors accompanied with fluid structure interaction. So it is not easy to estimate them accurately and immense time consuming calculation process would be necessary. In this research, a simplified method to analyse the dynamic structural responses of LNG tank insulation system under pressure time histories obtained by sloshing model test or numerical analysis was studied. The proposed technique based on the concept of linear combination of the triangular response functions which are the transient responses of structures under the unit triangular impact pressure acting on structures. The validity of suggested method was verified through the example calculations and applied to the dynamic structural response analysis of a real Mark III membrane type insulation system using the sloshing impact pressure time histories obtained by model test.