• Title/Summary/Keyword: Real time observation

Search Result 471, Processing Time 0.027 seconds

Tomographic Imaging for Structural Health Monitoring Inspection of Containment Liner Plates using Guided Ultrasonic (유도초음파를 활용한 격납건물 라이너 플레이트 상시감시 모니터링 검사를 위한 토모그래피 영상화)

  • Park, Junpil;Cho, Younho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.2
    • /
    • pp.1-9
    • /
    • 2020
  • Large-scale industrial facility structures continue to deteriorate due to the effects of operating and environmental conditions. The problems of these industrial facilities are potentially causing economic losses, environmental pollution, casualties, and national losses. Accordingly, in order to prevent disaster accidents of large structures in advance, the necessity of diagnosing structures using non-destructive inspection techniques is being highlighted. The defect occurrence, location and defect type of the structure are important parameters for predicting the remaining life of the structure, so continuous defect observation is very important. Recently, many researchers have been actively researching real-time monitoring technology to solve these problems. Structure Health Monitoring Inspection is a technology that can identify and respond to the occurrence of defects in real time, but there is a limit to check the degree of defects and the direction of growth of defects. In order to compensate for the shortcomings of these technologies, the importance of defect imaging techniques is emerging, and in order to find defects in large structures, a method of inspecting a wide range using guided ultrasonic is effective. The work presented here introduces a calculation for the shape factor for evaluation of the damaged area, as well as a variable β parameter technique to correct a damaged shape. Also, we perform research in modeling simulation and an experiment for comparison with a suggested inspection method and verify its validity. The curved structure image obtained by the advanced RAPID algorithm showed a good match between the defect area and the shape.

Correlation between clinical changes and viral genome copy number in rock bream infected with red sea bream iridovirus (참돔이리도바이러스 감염 돌돔에서 임상적 변화와 viral genome copy number 간의 상관관계)

  • Dong Jun Shin;Yi Seol Jeong;Min Jae Kim;Guk Hyun Kim;Kwang Il Kim
    • Journal of fish pathology
    • /
    • v.36 no.2
    • /
    • pp.229-238
    • /
    • 2023
  • In this study, the correlation between clinical changes and RSIV genome copy number was investigated to determine the quantitative criteria for the characteristics of RSIV infection. The rock bream (Oplegnathus fasciatus) was intraperitoneally injected with three different doses (1.0×101, 1.0×103 and 1.0×105 viral genome copies/fish) as low, medium, and high doses, respectively. The clinical signs (spleen enlargement, death) observation and real-time PCR were conducted at 5, 10 and 14 days post-injection. During the experiment, spleen index as a quantitative indicator for spleen enlargement was continuously increased in the medium- (up to 2.26) and high-dose (up to 4.99) challenge groups, respectively. Notably, when the spleen index was over 1.5, 2.0, 2.5 and 3.0, a positive correlation was revealed with average viral genome copy numbers of 2.51, 3.37, 4.97 and 5.43×107 viral genome copies/mg, respectively. Moreover, the threshold of spleen index over 1.5 was 1.0×106 viral genome copies/mg, while the thresholds of spleen index over 2.0 and dead was 2.51×107 viral genome copies/mg and the thresholds of spleen index over 2.5 and 3 was 3.98×107 viral genome copies/mg. These findings suggest the possibility of quantitatively analyzing the characteristics and development process of RSIV infection.

Accuracy Assessment of Precipitation Products from GPM IMERG and CAPPI Ground Radar over South Korea

  • Imgook Jung;Sungwon Choi;Daeseong Jung;Jongho Woo;Suyoung Sim;Kyung-Soo Han
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.3
    • /
    • pp.269-274
    • /
    • 2024
  • High-quality precipitation data are crucial for various industries, including disaster prevention. In South Korea, long-term high-quality data are collected through numerous ground observation stations. However, data between these stations are reprocessed into a grid format using interpolation methods, which may not perfectly match actual precipitation. A prime example of real-time observational grid data globally is the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (GPM IMERG) from National Aeronautics and Space Administration (NASA), while in South Korea, ground radar data are more commonly used. GPM and ground radar data exhibit distinct differences due to their respective processing methods. This study aims to analyze the characteristics of GPM and Constant Altitude Plan Position Indicator(CAPPI),representative real-time grid data, by comparing them with ground-observed precipitation data. The study period spans from 2021 to 2022, focusing on hourly data from Automated Synoptic Observing System (ASOS) sites in South Korea. The GPM data tend to underestimate precipitation compared to ASOS data, while CAPPI shows errors in estimating low precipitation amounts. Through this comparative analysis, the study anticipates identifying key considerations for utilizing these data in various applied fields, such as recalculating design rainfall, thereby aiding researchers in improving prediction accuracy by using appropriate data.

Application of Multi-periodic Harmonic Model for Classification of Multi-temporal Satellite Data: MODIS and GOCI Imagery

  • Jung, Myunghee;Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.573-587
    • /
    • 2019
  • A multi-temporal approach using remotely sensed time series data obtained over multiple years is a very useful method for monitoring land covers and land-cover changes. While spectral-based methods at any particular time limits the application utility due to instability of the quality of data obtained at that time, the approach based on the temporal profile can produce more accurate results since data is analyzed from a long-term perspective rather than on one point in time. In this study, a multi-temporal approach applying a multi-periodic harmonic model is proposed for classification of remotely sensed data. A harmonic model characterizes the seasonal variation of a time series by four parameters: average level, frequency, phase, and amplitude. The availability of high-quality data is very important for multi-temporal analysis.An satellite image usually have many unobserved data and bad-quality data due to the influence of observation environment and sensing system, which impede the analysis and might possibly produce inaccurate results. Harmonic analysis is also very useful for real-time data reconstruction. Multi-periodic harmonic model is applied to the reconstructed data to classify land covers and monitor land-cover change by tracking the temporal profiles. The proposed method is tested with the MODIS and GOCI NDVI time series over the Korean Peninsula for 5 years from 2012 to 2016. The results show that the multi-periodic harmonic model has a great potential for classification of land-cover types and monitoring of land-cover changes through characterizing annual temporal dynamics.

A Non-annotated Recurrent Neural Network Ensemble-based Model for Near-real Time Detection of Erroneous Sea Level Anomaly in Coastal Tide Gauge Observation (비주석 재귀신경망 앙상블 모델을 기반으로 한 조위관측소 해수위의 준실시간 이상값 탐지)

  • LEE, EUN-JOO;KIM, YOUNG-TAEG;KIM, SONG-HAK;JU, HO-JEONG;PARK, JAE-HUN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.4
    • /
    • pp.307-326
    • /
    • 2021
  • Real-time sea level observations from tide gauges include missing and erroneous values. Classification as abnormal values can be done for the latter by the quality control procedure. Although the 3𝜎 (three standard deviations) rule has been applied in general to eliminate them, it is difficult to apply it to the sea-level data where extreme values can exist due to weather events, etc., or where erroneous values can exist even within the 3𝜎 range. An artificial intelligence model set designed in this study consists of non-annotated recurrent neural networks and ensemble techniques that do not require pre-labeling of the abnormal values. The developed model can identify an erroneous value less than 20 minutes of tide gauge recording an abnormal sea level. The validated model well separates normal and abnormal values during normal times and weather events. It was also confirmed that abnormal values can be detected even in the period of years when the sea level data have not been used for training. The artificial neural network algorithm utilized in this study is not limited to the coastal sea level, and hence it can be extended to the detection model of erroneous values in various oceanic and atmospheric data.

Evaluation of On-Road NOx Emission from a Light Duty Diesel Vehicle using a Portable Emissions Measurement System (이동식 배출가스 측정장비를 이용한 소형 경유 자동차의 실도로 질소산화물 배출특성 분석)

  • Lee, Tae-Woo;Lee, Jong-Tae;Kim, Jeong-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.1
    • /
    • pp.94-104
    • /
    • 2012
  • The purpose of this research is to quantify the compliance of on-road emission from a light duty diesel vehicle, based on a comparison to emission regulation standard. $NO_x$, CO and THC emissions were measured using a portable device on a selected real-world driving route with a length of approximately 22 km. On-road measurements were repeated by 10 times on a same route to reflect variability in traffic conditions. A test route was divided into 22 road links with length of 1 km to analyze emission results with higher spatial resolution. The average emissions of $NO_x$, CO and THC over total travel distance, which is approximately 220 km, were quantified to be in compliance with emission regulation standards. Under higher spatial resolution, $NO_x$ concentration exceeded a standard in 92 links out of 220 links. The extended time in stop period and the stop-and-go driving cycle were identified as two important reasons for increased $NO_x$ emissions in observed cases. Heavy traffics showed higher $NO_x$ emissions than free flow. These results indicate that the real-world vehicle emissions might exceed the compliance level associate with traffic conditions. Another interesting observation of this research is that the on-road emission characteristics can be independent to the average speed of road links with higher spatial resolution. Variability in on-road emission might not be fully described by solely relying on an average speed, because variability in traffic conditions and road conditions can influence on real-world vehicle emissions.

Restoration, Prediction and Noise Analysis of Geomagnetic Time-series Data (시계열 지자기 측정 자료의 복원, 예측 및 잡음 분석 연구)

  • Ji, Yoon-Soo;Oh, Seok-Hoon;Suh, Baek-Soo;Lee, Duk-Kee
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.613-628
    • /
    • 2011
  • Restoration, prediction and noise analysis of geomagnetic data measured in the Korean Peninsula were performed. Restoration methods based on an optimized principal component analysis (PCA) and the geostatistical kriging approach were proposed, and its effectiveness was also interpreted. The PCA-based method seemed to be effective to restore the periodical signals and the geostatistical approach was stable to fill the gaps of measurements. To analyze the noise level for each observatory, the geomagnetic time-series was plotted by scattergram which reflects the spatial variation, using data observed during same period. The scattergram showed that the observation made at Cheongyang seemed to have better quality in spatial continuity and stability, and the restoration result was also better than that of Icheon site. For the restoration, both of the methods, geostatistical and optimizaed PCA, showed stable result when the missing of observation was within 20 points. However, in case of more missing observations than 20 points and prediction problem, the optimized PCA seemed to be closer to the real observation considering the frequency-domain characteristics. The prediction using the optimized PCA seems to be plausible for one day of period for interpretation.

A Study on the Performance Improvement of Software Digital Filter using GPU (GPU를 이용한 소프트웨어 디지털 필터의 성능개선에 관한 연구)

  • Yeom, Jae-Hwan;Oh, Se-Jin;Roh, Duk-Gyoo;Jung, Dong-Kyu;Hwang, Ju-Yeon;Oh, Chungsik;Kim, Hyo-Ryoung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.4
    • /
    • pp.153-161
    • /
    • 2018
  • This paper describes the performance improvement of Software (SW) digital filter using GPU (Graphical Processing Unit). The previous developed SW digital filter has a problem that it operates on a CPU (Central Processing Unit) basis and has a slow speed. The GPU was introduced to filter the data of the EAVN (East Asian VLBI Network) observation to improve the operation speed and to process data with other stations through filtering, respectively. In order to enhance the computational speed of the SW digital filter, NVIDIA Titan V GPU board with built-in Tensor Core is used. The processing speed of about 0.78 (1Gbps, 16MHz BW, 16-IF) and 1.1 (2Gbps, 32MHz BW, 16-IF) times for the observing time was achieved by filtering the 95 second observation data of 2 Gbps (512 MHz BW, 1-IF), respectively. In addition, 2Gbps data is digitally filtered for the 1 and 2Gbps simultaneously observed with KVN (Korean VLBI Network), and compared with the 1Gbps, we obtained similar values such as cross power spectrum, phase, and SNR (Signal to Noise Ratio). As a result, the effectiveness of developed SW digital filter using GPU in this research was confirmed for utilizing the data processing and analysis. In the future, it is expected that the observation data will be able to be filtered in real time when the distributed processing optimization of source code for using multiple GPU boards.

Development and Application of Remote Observatory System for Elementary School Gifted Students in Science (초등과학영재를 위한 원격천문대 시스템의 개발 및 적용)

  • Lee, Jaeho;Baek, Sang Ho
    • Journal of Gifted/Talented Education
    • /
    • v.25 no.5
    • /
    • pp.697-709
    • /
    • 2015
  • This paper aims at shaping remote observatory system environment for schools, developing astronomical observation program using that system and applying it to science-gifted elementary students in order to figure out effects on their scientific investigation ability and attitude. in order to figure out effects of astronomical observation program using remote observatory program on scientific investigation ability and attitude of science-gifted elementary students, test was conducted on gifted students class of 5th grade in A Elementary School(15) and those of 5th grade in B Elementary School(20). The summary of this paper's results are as follows. First, in order to compose remote observatory system, an astronomical telescope available for remote control to transfer actual observed images in real-time was manufactured. Second, learning program for using remote observatory system wad developed by selecting contents through analysis of the curriculum. Third, in order to figure out effects of astronomical observation program using remote observatory program on scientific investigation ability and attitude of science-gifted elementary students. As a result, both of basic investigation ability and integrated investigation abilit, sub-elements of scientific investigation ability, showed significant differences and scientific investigation ability combining basic and integrated investigation abilities showed significant differences as well. Effects of astronomical observation program applying remote observatory also showed significant differences and its sub-elements, openness, collaboration, patience and creativeness did not show significant differences while curiosity, critics and volunteering showed significant differences.

Current Status and Future Plans for Surface Current Observation by HF Radar in the Southern Jeju (제주 남부 HF Radar 표층해류 관측 현황 및 향후계획)

  • Dawoon, Jung;Jae Yeob, Kim;Jae-il, Kwon;Kyu-Min, Song
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.198-210
    • /
    • 2022
  • The southern strait of Jeju is a divergence point of the Tsushima Warm Current (TWC), and it is the starting point of the thermohaline circulation in the waters of the Korean Peninsula, affecting the size and frequency of marine disasters such as typhoons and tsunamis, and has a very important oceanographic impact, such as becoming a source of harmful organisms and radioactively contaminated water. Therefore, for an immediate response to these maritime disasters, real-time ocean observation is required. However, compared to other straits, in the case of southern Jeju, such wide area marine observations are insufficient. Therefore, in this study, surface current field of the southern strait of Jeju was calculated using High-Frequency radar (HF radar). the large surface current field is calculated, and post-processing and data improvement are carried out through APM (Antenna Pattern Measurement) and FOL (First Order Line), and comparative analysis is conducted using actual data. As a result, the correlation shows improvement of 0.4~0.7 and RMSE of about 1~19 cm/s. These high-frequency radar observation results will help solve domestic issues such as response to typhoons, verification of numerical models, utilization of wide area wave data, and ocean search and rescue in the future through the establishment of an open data network.