• Title/Summary/Keyword: Real time imaging

Search Result 536, Processing Time 0.028 seconds

Nobiletin attenuates neurotoxic mitochondrial calcium overload through K+ influx and ∆Ψm across mitochondrial inner membrane

  • Lee, Ji Hyung;Amarsanaa, Khulan;Wu, Jinji;Jeon, Sang-Chan;Cui, Yanji;Jung, Sung-Cherl;Park, Deok-Bae;Kim, Se-Jae;Han, Sang-Heon;Kim, Hyun-Wook;Rhyu, Im Joo;Eun, Su-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.3
    • /
    • pp.311-319
    • /
    • 2018
  • Mitochondrial calcium overload is a crucial event in determining the fate of neuronal cell survival and death, implicated in pathogenesis of neurodegenerative diseases. One of the driving forces of calcium influx into mitochondria is mitochondria membrane potential (${\Delta}{\psi}_m$). Therefore, pharmacological manipulation of ${\Delta}{\psi}_m$ can be a promising strategy to prevent neuronal cell death against brain insults. Based on these issues, we investigated here whether nobiletin, a Citrus polymethoxylated flavone, prevents neurotoxic neuronal calcium overload and cell death via regulating basal ${\Delta}{\psi}_m$ against neuronal insult in primary cortical neurons and pure brain mitochondria isolated from rat cortices. Results demonstrated that nobiletin treatment significantly increased cell viability against glutamate toxicity ($100{\mu}M$, 20 min) in primary cortical neurons. Real-time imaging-based fluorometry data reveal that nobiletin evokes partial mitochondrial depolarization in these neurons. Nobiletin markedly attenuated mitochondrial calcium overload and reactive oxygen species (ROS) generation in glutamate ($100{\mu}M$)-stimulated cortical neurons and isolated pure mitochondria exposed to high concentration of $Ca^{2+}$ ($5{\mu}M$). Nobiletin-induced partial mitochondrial depolarization in intact neurons was confirmed in isolated brain mitochondria using a fluorescence microplate reader. Nobiletin effects on basal ${\Delta}{\psi}_m$ were completely abolished in $K^+-free$ medium on pure isolated mitochondria. Taken together, results demonstrate that $K^+$ influx into mitochondria is critically involved in partial mitochondrial depolarization-related neuroprotective effect of nobiletin. Nobiletin-induced mitochondrial $K^+$ influx is probably mediated, at least in part, by activation of mitochondrial $K^+$ channels. However, further detailed studies should be conducted to determine exact molecular targets of nobiletin in mitochondria.

The establishment of Digital Image Capture System(DICS) using conventional simulator (Conventional simulator를 이용한 Digital image capture system(DICS)의 구축)

  • Oh Taesung;Park Jongil;Byun Youngsik;Shin HyunKyoh
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.2
    • /
    • pp.25-32
    • /
    • 2004
  • Purpose : The simulator is used to determine patient field and ensure the treatment field, which encompasses the required anatomy during patient normal movement such as during breathing. The latest simulator provide real time display of still, flouroscopic and digitalized image, but conventional simulator is not yet. The purpose of this study is to introduce digital image capture system(DICS) using conventional simulator and clinical case using digital captured still and flouroscopic image. Methods and materials : We connect the video signal cable to the video terminal in the back up of simulator monitor, and connect the video jack to the A/D converter. After connection between the converter jack and computer, We can acquire still image and record flouroscopic image with operating image capture program. The data created with this system can be used in patient treatment, and modified for verification by using image processing software. (j.e. photoshop, paintshop) Result : DICS was able to establish easy and economical procedure. DCIS image was helpful for simulation. DICS imaging was powerful tool in the evaluation of the department specific patient positioning. Conclusion : Because the commercialized simulator based of digital capture is very expensive, it is not easily to establish DICS simulator in the most hospital. DICS using conventional simulator enable to utilize the practical use of image equal to high cost digitalized simulator and to research many clinical cases in case of using other software program.

  • PDF

Direct Imaging of Polarization-induced Charge Distribution and Domain Switching using TEM

  • O, Sang-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.99-99
    • /
    • 2013
  • In this talk, I will present two research works in progress, which are: i) mapping of piezoelectric polarization and associated charge density distribution in the heteroepitaxial InGaN/GaN multi-quantum well (MQW) structure of a light emitting diode (LED) by using inline electron holography and ii) in-situ observation of the polarization switching process of an ferroelectric Pb(Zr1-x,Tix)O3 (PZT) thin film capacitor under an applied electric field in transmission electron microscope (TEM). In the first part, I will show that strain as well as total charge density distributions can be mapped quantitatively across all the functional layers constituting a LED, including n-type GaN, InGaN/GaN MQWs, and p-type GaN with sub-nm spatial resolution (~0.8 nm) by using inline electron holography. The experimentally obtained strain maps were verified by comparison with finite element method simulations and confirmed that not only InGaN QWs (2.5 nm in thickness) but also GaN QBs (10 nm in thickness) in the MQW structure are strained complementary to accommodate the lattice misfit strain. Because of this complementary strain of GaN QBs, the strain gradient and also (piezoelectric) polarization gradient across the MQW changes more steeply than expected, resulting in more polarization charge density at the MQW interfaces than the typically expected value from the spontaneous polarization mismatch alone. By quantitative and comparative analysis of the total charge density map with the polarization charge map, we can clarify what extent of the polarization charges are compensated by the electrons supplied from the n-doped GaN QBs. Comparison with the simulated energy band diagrams with various screening parameters show that only 60% of the net polarization charges are compensated by the electrons from the GaN QBs, which results in the internal field of ~2.0 MV cm-1 across each pair of GaN/InGaN of the MQW structure. In the second part of my talk, I will present in-situ observations of the polarization switching process of a planar Ni/PZT/SrRuO3 capacitor using TEM. We observed the preferential, but asymmetric, nucleation and forward growth of switched c-domains at the PZT/electrode interfaces arising from the built-in electric field beneath each interface. The subsequent sideways growth was inhibited by the depolarization field due to the imperfect charge compensation at the counter electrode and preexisting a-domain walls, leading to asymmetric switching. It was found that the preexisting a-domains split into fine a- and c-domains constituting a $90^{\circ}$ stripe domain pattern during the $180^{\circ}$ polarization switching process, revealing that these domains also actively participated in the out-of-plane polarization switching. The real-time observations uncovered the origin of the switching asymmetry and further clarified the importance of charged domain walls and the interfaces with electrodes in the ferroelectric switching processes.

  • PDF

Analysis of the Relationships according to the Frame (f/s) Change of Cine Imaging in Coronary Angiographic System: With Focus on FOV Enlargement and Live Zoom (심장 혈관 조영장치에서의 프레임 레이트(f/s) 변화에 따른 상관 관계 분석 : FOV 확대와 Live Zoom을 중점으로)

  • Kim, Won Hyo;Song, Jong-Nam;Han, Jae-Bok
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.845-852
    • /
    • 2018
  • This study aimed to investigate the difference of X-ray exposure by comparing and analyzing absorbed dose according to changes in the number of frames in coronary angiography, also depending whether the zoom mode is FOV enlargement or Zoom Live. Moreover, for appropriate frame selection measures for examination, including the effect of frame change on the image quality, were sought by measuring the noise strength expressed by the standard deviation (SD), the signal to noise ratio (SNR) and contrast to noise ratio (CNR). The study was conducted with an anthropomorphic phantom on an angio-system. The linear relationship between the frame rate and the radiation dose was evident. On the contrary, the indices of image quality (SD, SNR, and CNR) were almost constant irrespective of the number of frames. The difference depending on the zoom mode was not statistically significant for DAP, air kerma, and SD (p > 0.05). However, SNR and CNR were statistically different between FOV enlargement and Zoom Live. In conclusion, since the image quality was not degraded significantly with the decreasing frame rate from 30, 15, to 7.5 f/s and the radiation dose evidently decreases in almost exactly linear proportion to the decreasing frame rate, the number of frames per second needs to be maintained as low as reasonably achievable. As for the dependence on the zooming mode, the Live Zoom mode showed statistically significant improvement in the image quality indices of SNR and CNR and it justifies active use of the Live Zoom mode which enables real-time image enlargment without additional radiation dose.

Quality Evaluation of Drone Image using Siemens star (Siemens star를 이용한 드론 영상의 품질 평가)

  • Lee, Jae One;Sung, Sang Min;Back, Ki Suk;Yun, Bu Yeol
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.217-226
    • /
    • 2022
  • In the view of the application of high-precision spatial information production, UAV (Umanned Aerial Vehicle)-Photogrammetry has a problem in that it lacks specific procedures and detailed regulations for quantitative quality verification methods or certification of captured images. In addition, test tools for UAV image quality assessment use only the GSD (Ground Sample Distance), not MTF (Modulation Transfer Function), which reflects image resolution and contrast at the same time. This fact makes often the quality of UAV image inferior to that of manned aerial image. We performed MTF and GSD analysis simultaneously using a siemens star to confirm the necessity of MTF analysis in UAV image quality assessment. The analyzing results of UAV images taken with different payload and sensors show that there is a big difference in σMTF values, representing image resolution and the degree of contrast, but slightly different in GSD. It concluded that the MTF analysis is a more objective and reliable analysis method than just the GSD analysis method, and high-quality drone images can only be obtained when the operator make images after judging the proper selection the sensor performance, image overlaps, and payload type. However, the results of this study are derived from analyzing only images acquired by limited sensors and imaging conditions. It is therefore expected that more objective and reliable results will be obtained if continuous research is conducted by accumulating various experimental data in related fields in the future.

Comparative Analysis of Src Activity in Plasma Membrane Subdomains via Genetically Encoded FRET Biosensors (유전적으로 암호화된 FRET 바이오센서를 통한 세포막 하위 도메인의 Src 활성 비교 분석)

  • Gyuho Choi;Yoon-Kwan Jang;Jung-Soo Suh;Heonsu Kim;Sanghyun Ahn;Tae-Jin Kim
    • Journal of Life Science
    • /
    • v.33 no.2
    • /
    • pp.191-198
    • /
    • 2023
  • As a member of the focal adhesion complex of the plasma membrane, Src is a nonreceptor tyrosine kinase that controls cell adhesion and motility. However, how Src activity is regulated in the plasma membrane microdomain in response to components of the extracellular matrix (ECM) remains unclear. This study compared and investigated the activity of Src in response to three representative ECM proteins: collagen type 1, fibronectin, and laminin. Genetically encoded FRET-based Src biosensors for plasma membrane subdomains were used. FRET-based biosensors allow the real-time analysis of protein activity in living cells based on their high spatiotemporal resolution. The results showed that Src activity was maintained at a high level under all ECM conditions of the lipid raft, and there was no significant difference between the ECM conditions. In contrast, Src activity was maintained at a low level in the non-lipid raft membrane. In addition, the Src activity of lipid rafts remained significantly higher than that of non-lipid raft regions under the same ECM conditions. In conclusion, this study demonstrates that Src activity can be controlled differently by lipid rafts and non-lipid raft microdomains.

A of Radiation Field with a Developed EPID

  • Y.H. Ji;Lee, D.H.;Lee, D.H.;Y.K. Oh;Kim, Y.J.;C.K. Cho;Kim, M.S.;H.J. Yoo;K.M. Yang
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.67-67
    • /
    • 2003
  • It is crucial to minimize setup errors of a cancer treatment machine using a high energy and to perform precise radiation therapy. Usually, port film has been used for verifying errors. The Korea Cancer Center Hospital (KCCH) has manufactured digital electronic portal imaging device (EPID) system to verify treatment machine errors as a Quality Assurance (Q.A) tool. This EPID was consisted of a metal/fluorescent screen, 45$^{\circ}$ mirror, a camera and an image grabber and could display the portal image with near real time KIRAMS has also made the acrylic phantom that has lead line of 1mm width for ligh/radiation field congruence verification and reference points phantom for using as an isocenter on portal image. We acquired portal images of 10$\times$10cm field size with this phantom by EPID and portal film rotating treatment head by 0.3$^{\circ}$, 0.6$^{\circ}$ and 0.9$^{\circ}$. To check field size, we acquired portal images with 18$\times$18cm, 19$\times$19cm and 20$\times$20cm field size with collimator angle 0$^{\circ}$ and 0.5$^{\circ}$ individually. We have performed Flatness comparison by displaying the line intensity from EPID and film images. The 0.6$^{\circ}$ shift of collimator angle was easily observed by edge detection of irradiated field size on EPID image. To the extent of one pixel (0.76mm) difference could be detected. We also have measured field size by finding optimal threshold value, finding isocenter, finding field edge and gauging distance between isocenter and edge. This EPID system could be used as a Q.A tool for checking field size, light/radiation congruence and flatness with a developed video based EPID.

  • PDF

A Study on the Measurement of Respiratory Rate Using Image Alignment and Statistical Pattern Classification (영상 정합 및 통계학적 패턴 분류를 이용한 호흡률 측정에 관한 연구)

  • Moon, Sujin;Lee, Eui Chul
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.10
    • /
    • pp.63-70
    • /
    • 2018
  • Biomedical signal measurement technology using images has been developed, and researches on respiration signal measurement technology for maintaining life have been continuously carried out. The existing technology measured respiratory signals through a thermal imaging camera that measures heat emitted from a person's body. In addition, research was conducted to measure respiration rate by analyzing human chest movement in real time. However, the image processing using the infrared thermal image may be difficult to detect the respiratory organ due to the external environmental factors (temperature change, noise, etc.), and thus the accuracy of the measurement of the respiration rate is low.In this study, the images were acquired using visible light and infrared thermal camera to enhance the area of the respiratory tract. Then, based on the two images, features of the respiratory tract region are extracted through processes such as face recognition and image matching. The pattern of the respiratory signal is classified through the k-nearest neighbor classifier, which is one of the statistical classification methods. The respiration rate was calculated according to the characteristics of the classified patterns and the possibility of breathing rate measurement was verified by analyzing the measured respiration rate with the actual respiration rate.

A Study on Real-Time Defect Detection Using Ultrasound Excited Thermography (초음파 서모그라피를 이용한 실시간 결함 검출에 대한 연구)

  • Cho, Jai-Wan;Seo, Yong-Chil;Jung, Seung-Ho;Jung, Hyun-Kyu;Kim, Seung-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.4
    • /
    • pp.211-219
    • /
    • 2006
  • The UET(ultrasound excited thermography) for the ,eat-time diagnostics of the object employs an infrared camera to image defects of the surface and subsurface which are locally heated using high-frequency putted ultrasonic excitation. The dissipation of high-power ultrasonic energy around the feces of the defects causes an increase In temperature. The defect's image appears as a hot spot (bright IR source) within a dark background field. The UET for nondestructive diagnostic and evaluation is based on the image analysis of the hot spot as a local response to ultrasonic excited heat deposition. In this paper the applicability of VET for fast imaging of defect is described. The ultrasonic energy is injected into the sample through a transducer in the vertical and horizontal directions respectively. The voltage applied to the transducer is measured by digital oscilloscope, and the waveform are compared. Measurements were performed on four kinds of materials: SUS fatigue crack specimen(thickness 14mm), PCB plate(1.8 mm), CFRP plate(3 mm) and Inconel 600 plate (1 mm). A high power ultrasonic energy with pulse durations of 250ms Is injected into the samples in the horizontal and vertical directions respectively The obtained experimental result reveals that the dissipation loss of the ultrasonic energy In the vertical injection is less than that in the horizontal direction. In the cafe or PCB, CFRP, the size of hot spot in the vortical injection if larger than that in horizontal direction. Duration time of the hot spot in the vertical direction is three times as long as that in the horizontal direction. In the case of Inconel 600 plate and SUS sample, the hot spot in the horizontal injection was detected faster than that in the vertical direction

Strategies for Increasing the Value and Sustainability of Archaeological Education in the Post-COVID-19 Era (포스트 코로나 시대 고고유산 교육의 가치와 지속가능성을 위한 전략)

  • KIM, Eunkyung
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.2
    • /
    • pp.82-100
    • /
    • 2022
  • With the crisis of the COVID-19 pandemic and the era of the 4th industrial revolution, archaeological heritage education has entered a new phase. This article responds to the trends in the post-COVID-19 era, seeking ways to develop archaeological heritage education and sustainable strategies necessary in the era of the 4th industrial revolution. The program of archaeological heritage education required in the era of the 4th industrial revolution must cultivate creative talent, solve problems, and improve self-efficacy. It should also draw attention to archaeological heritage maker education. Such maker education should be delivered based on constructivism and be designed by setting specific learning goals in consideration of various age-specific characteristics. Moreover, various ICT-based contents applying VR, AR, cloud, and drone imaging technologies should be developed and expanded, and, above all, ontact digital education(real-time virtual learning) should seek ways to revitalize communities capable of interactive communication in non-face-to-face situations. The development of such ancient heritage content needs to add AI functions that consider learners' interests, learning abilities, and learning purposes while producing various convergent contents from the standpoint of "cultural collage." Online archaeological heritage content education should be delivered following prior learning or with supplementary learning in consideration of motivation or field learning to access the real thing in the future. Ultimately, archaeological ontact education will be delivered using cutting-edge technologies that reflect the current trends. In conjunction with this, continuous efforts are needed for constructive learning that enables discovery and question-exploration.